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Abstract
Image denoising, depth completion, scene flow, and dynamic 3D reconstruction

are all examples of recovery problems: the estimation of multidimensional signals
from corrupted or partial measurements. This thesis examines these problems from
the classic analysis-by-synthesis perspective, where a signal model is used to propose
hypotheses, which are then compared to observations. This paradigm has fallen out
of favor with the rise of feed-forward neural networks, but we claim that analysis by
synthesis still has much to offer. Specifically, we argue it gives us a general framework
for combining modern learning-based approaches with knowledge of forward models
and intuitive priors.

First, we will discuss the typical feed-forward setting where one has a dataset of
paired measurements and clean signals. In this setting, we show how embedding an
analysis by synthesis optimization within the learning process can help us enforce
constraints and generalize to new forward models. Second, we will focus on the self-
supervised setting in the context of scene-flow estimation, a task where we only have
indirect measurements (sequences of point clouds) of the signal of interest (motion).
In this case, we will see how a test-time optimization can create a learning target for
a feed-forward network that can then be scaled to large unlabeled datasets. Finally,
we will examine a problem of estimating multiple signals simultaneously from mea-
surements: the recovery of geometry and motion from sequences of point clouds.
Here, instead of embedding an optimization into the learning process, we do the
reverse. We show how a global analysis-by-synthesis objective can be broken down
into components appropriate for off-the-shelf models. In each of these problems,
we will see that analysis by synthesis offers us a powerful and flexible paradigm for
structuring our approaches and injecting learning in the right places.
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Chapter 1

Introduction

A recurring problem in computer vision and robotics is the recovery of an under-
determined multidimensional signal from corrupted or partial measurements. We
call such tasks recovery problems. The most fundamental multidimensional signal
in computer vision is RGB images, but we will also consider other signals, such as
3D scene geometry and motion. To give a concrete example, some classic recovery
problems aim to produce clean, high-resolution images from noisy, blurry, or low-
resolution inputs. These problems contain the fundamental structure we will use to
analyze all tasks discussed in this thesis. Specifically, they have (1) a multidimen-
sional signal to be recovered, (2) a known forward model that produces (3) observed
measurements. Historically, one of the main paradigms for approaching these types
of recovery problems has been Analysis by Synthesis.

In the context of recovery problems, analysis by synthesis is a paradigm where an
internal model of the signal space is combined with the forward model to produce a
hypothesis of the original. The quality of this hypothesis can be measured by pass-
ing it through the forward model and comparing the results to the observations.
This naturally leads to an optimization-based inference where the reconstruction
parameters are tuned to recreate the observations. Total variation denoising is an
illustrative example of this approach. In this example, the forward model is ad-
ditive Gaussian noise, and the signal model is that images with small gradients
are more likely than those with large gradients. Combining these gives the classi-
cal optimization objective. These approaches were popular since they provided an
intuitive language for encoding knowledge of sensing processes and signal priors.
However, the increased availability of large datasets and the success of deep learn-
ing have steered most research away from this paradigm. Instead, many works have
used these large datasets to train neural networks to predict recovered signals from
measurements directly.

This new paradigm, which we will call the “feed-forward approach”, has been
remarkably successful. Feed-forward networks have proven to be effective at learning
the classic recovery problems, such as super-resolution and deblurring, and more
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Figure 1.1: The focus of this thesis is the comparison and combination of two meth-
ods for recovery problems in computer vision: (a) analysis by synthesis and (b)
feed-forward. In the analysis by synthesis paradigm, signals are reconstructed by
proposing hypotheses, which are passed through a model of the measurement pro-
cess and then compared to the actual measurements. The feed-forward approach
instead learns the entire mapping from measurements to predicted signals by draw-
ing on a large dataset of examples (blue box). The critical differences between these
approaches are that the analysis by synthesis approach allows for easy integration of
forward models whereas the feed-forward approach allows for easy scaling to large
datasets.

complex problems, such as the prediction of dense geometry from partial point clouds
or even dense geometry directly from images. Key to all of these successes has been
the ability of feed-forward networks to utilize vast amounts of data, eliminating the
need for handcrafted priors. Given this “bitter lesson,” it is unclear what use the
classic analysis-by-synthesis approach has. This thesis aims to revisit this classic
perspective in light of advances in machine learning.

The claim is that when faced with a recovery problem, analysis by synthesis
gives us a general framework for combining modern learning-based approaches with
knowledge of forward models and intuitive priors. We will examine three different
settings for recovery problems. First, we will discuss the typical feed-forward set-
ting where one has a dataset of paired measured and clean signals. In this setting,
we show how embedding an analysis by synthesis optimization within the learn-
ing process can help us enforce constraints and generalize to new forward models.
Second, we will focus on the self-supervised setting in the context of scene-flow
estimation, a task where we only have indirect measurements (sequences of point
clouds) of the signal of interest (motion). In this case, we will see how a test-time
optimization can create a learning target for a feed-forward network that can be
scaled to large unlabeled datasets. Finally, we will examine a problem of estimating
multiple signals simultaneously from measurements: the recovery of geometry and
motion from sequences of point clouds. Here, instead of embedding an optimization
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into the learning process, we do the reverse. We show how a global analysis-by-
synthesis objective can be broken down into components appropriate off-the-shelf
learned methods can solve. In each of these problems, we will see that analysis by
synthesis offers us a powerful and flexible paradigm for structuring our approaches
and injecting learning in the right places.

1.1 Differentiable Optimization for Supervised Recovery
Problems (ACCV 2019, CVPR 2020)

We will begin with the setting most amenable to the feed-forward approach. We
call this setting a “supervised recovery problem,” where one has access to a large
dataset of pairs of original and measured signals, which can then be used to train a
neural network to map measurements to recovered signals. The typical feed-forward
formulation of these problems optimizes the weights of an encoder-decoder network
to minimize the sum of reconstruction errors over the whole dataset. A typical
objective looks like

min
Θ

∑
(xi,yi)

L (yi, f(xi; Θ)) (1.1)

where (xi, yi) are pairs of observations and clean signals and L is an appropri-
ate reconstruction loss. We will specifically consider the reconstruction problems
of super-resolution for LiDAR, removing compression artifacts from RGB images,
and lifting 2D point tracks to 3D trajectories. All of these problems have existing
feed-forward approaches similar to eq. (1.1). This straightforward approach can
be successful, but in contrast to analysis by synthesis, it lacks a sensible way of
incorporating knowledge of the forward model.

Instead of directly learning the mapping from measurements to signals, we draw
on the classical compressed sensing approach of learning a sparse signal model which
can then be inverted to solve each instance of the recovery problem. Sparsity is a
property of many real-world signals which says that a clean signal y can be written
as a linear combination of a small number of basis elements. The distinction between
a sparsity and low-rank model is that each signal y may be supported by a different
small subset of a large set of possible basis vectors. That is, the signal space is
locally low rank. Sparsity has a rich history of theoretical and practical results.
Still, one of the classical weaknesses is that finding the set of possible basis vectors
can be challenging.

The insight we take from the feed-forward approach is that as long as the infer-
ence process can be differentiated, we can use the given dataset to implicitly learn
the parameters that lead to the best reconstructions. This naturally leads to a learn-
ing objective similar to eq. (1.1) but with the feed-forward network replaced with an
inner optimization that performs sparse code recovery. We then reduce this bi-level
optimization to a single-level one through loop unrolling. In LiDAR densification,
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restoration of compressed images, and the recovery of 3D motion from 2D tracks,
we show that this bilevel optimization can effectively learn models that give good
signal reconstructions and generalize to different measurement models at test time.

1.2 A Student–Teacher Paradigm for an Un-Supervised Re-
covery Problem (WACV 2023, ICLR 2024)

The supervised setting is powerful, but in many cases, we do not have a large dataset
of paired clean and measured signals. Some important signals are extremely difficult
or impossible to measure directly. The example we are concerned with is scene flow,
the 3D motion of all points in a scene, specifically in the context of autonomous
driving. Autonomous vehicles use LiDAR to make sparse measurements of the
scene geometry but still need to estimate the motion of other objects. Using human
labelers to produce a dataset of ground truth motion labels is prohibitive, and as a
result, there is significant interest in label-free or self-supervised approaches.

In this setting, we will see another benefit of the analysis-by-synthesis approach:
it is often very easy to incorporate intuitive priors into our models. This gives us the
surprising result that in this situation where we have no examples of the clean scene
flow signal, incorporating human priors can be more effective than the feed-forward
advantage of scaling to large datasets. To see this, we comprehensively evaluated
top feed-forward scene flow models across multiple autonomous driving settings.
Our analysis of the evaluation revealed that a data-free test-time optimization that
minimized a simple motion model over the same self-supervised loss as the feed-
forward methods could significantly outperform them. Thus, we concluded that
these self-supervised methods did not learn anything from the dataset that could
not be learned from a single example.

We show that rather than trying to glue these priors to a feed-forward network,
we can adopt a student-teacher paradigm that lets us transfer the information in
our analysis by synthesis model to a feed-forward network. To do this, we run our
optimization over each example in our dataset to produce pseudo-labels, which are
then distilled into a student network through supervised learning on the pseudo-
labels. The student network eventually outperforms our teacher optimization when
scaled to a large dataset, demonstrating that this method can achieve the best of
both worlds of learning from human priors and large-scale data.

1.3 A Decompositional Approach for a Multi-Signal Un-
Supervised Recovery Problem (In Submission)

In the previous settings, we were concerned with reconstructing one signal from a
set of measurements. In the wild, however, we often are concerned with multiple
signals that, when combined, give rise to a sequence of measurements. In the final
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portion of this thesis, we tackle one such problem: the reconstruction of geometry
and motion from a sequence of LiDAR measurements.

Once again, we will see that analysis by synthesis gives a powerful perspective
for relating measurements to underlying signals. In this instance, we explore a dif-
ferent mechanism for infusing this perspective with modern learning techniques. We
use analysis-by-synthesis to combine motion, geometry, and LiDAR measurement
models into a global optimization, which can be broken down into sub-components
appropriate for off-the-shelf learned models. We find that an accurate model of the
measurement process is critical to achieving high-quality reconstruction, and our
analysis by synthesis makes it clear how that model should be incorporated.
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Chapter 2

Supervised Recovery Problems

2.1 Introduction

In recent years 3D information has become an important component of robotic sens-
ing. Usually this information is presented in 2.5D as a depth map, either measured
directly using LiDAR or computed using stereo correspondence. Since LiDAR and
stereo techniques yield few samples relative to modern image sensors, it has become
desirable to convert sparse depth measurements into high resolution depth maps as
shown in Figure 2.1.

Recent works [10, 14] have directly applied deep networks to depth comple-
tion from sparse measurements. However, common network architectures have two
drawbacks when applied to this task: 1) They implicitly pose depth completion as
finding a mapping from sparse depth maps to dense ones, instead of as finding a
depth map that is consistent with the sparse input. This essentially throws away
information and we observe that feed forward networks do not learn to propagate
the input points through to the output. Qualitative evidence of this can be seen in
Figure (2.1). 2) Common networks are sensitive to the sparsity of the input since
they treat all pixels equally, regardless of whether or not they represent samples or
missing input. Special CNN networks have been designed to address this problem,
but they still do not express the constraints given by the input [14]. In this paper
we address both of these issues with a novel deep recurrent autoencoder architec-
ture, which internally optimizes its depth prediction with respect to both sparsity
and input constraints. To do this, we have taken inspiration from Compressed sens-
ing (CS) which provides a natural framework for this problem. Formally, CS is
concerned with recovering signals from incomplete measurements by enforcing that
signals be sparse when measured in an appropriate basis. This basis takes the form
of an overcomplete matrix which maps sparse representations to observed signals.

The choice of dictionary is crucial for recovering the signal efficiently, especially
when the dimensionality is high. For high resolution imagery data, such as depth
maps, multi-layer convolutional sparse coding (CSC) [12] is effective as it explicitly
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Figure 2.1: The bicyclist and bollards can barely be seen in the input map but a
clearly represented in the output. Our method also accurately reconstructs very
thin objects such as the sign post. On the right it can be seen that our method
enforces that its prediction should match the input points while the SparseConvNet
systematically underestimates the depth.

models local interactions through the convolution operator with tractable computa-
tional and model complexity. However, none of the existing multi-layer convolutional
sparse coding algorithms are designed for learning from sparse ground truth data.
This is reflected by the fact that recent works [7, 8] applying CS to depth com-
pletion are restricted to using single-level, hand crafted dictionaries. CS has also
fallen out of fashion since the existing algorithms have difficult to interpret hyper-
parameters, and often do not achieve good performance without careful tuning of
these parameters.

Recent developments in the formal analysis of deep learning have shown that
convolutional neural networks and convolutional sparse coding are closely related.
Specifically it has been shown that CNNs with ReLU activation functions are car-
rying out a specific form of the layered thresholding algorithm for CSC. Layered
thresholding is a simple algorithm for solving multi-layered convolutional sparse
coding (ML-CSC) problems, which can be effective when there is little noise and
the coherence of the dictionary is high. Motivated by the work of Murdock et al.
[13], in this paper we propose a network architecture which encodes a more sophis-
ticated algorithm for ML-CSC. Encoding the ML-CSC objective in a deep network
allows us to learn the dictionaries and parameters together in an end to end fash-
ion. We show that by better approximating this objective, we can out perform all
published results on the KITTI depth completion benchmark while using far fewer
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parameters and layers. Furthermore, this work builds on the Alternating Direc-
tion Neural Network (ADNN) framework of Murdock et al. which gives theoretical
insight into deep learning and we believe is a promising new area of research.

To summarize, the main contributions of this paper are:

1. We frame an end-to-end multi-layer dictionary learning algorithm as a neural
network. This allows us to effectively learn dictionaries and hyper-parameters
from a large dataset. In comparison, existing CS algorithms either use hand
crafted dictionaries, separately learned multi-level dictionaries, or are inappli-
cable to incomplete training data [15], as is our case.

2. Our method allows for explicit encoding of the constraints from the input
sparse depth. Current deep learning approaches [10] simply feed in a sparse
depth map and rely solely on data to teach the network to identify which inputs
represent missing data. Some recent models [14] explicitly include masks to
achieve sparsity invariance, but none have a guaranteed way of encoding that
the input is a noise corrupted subset of the desired output. In contrast our
method directly optimizes the predicted map with respect to the input.

3. Our method demonstrates state-of-the-art performance with much fewer pa-
rameters compared to deep networks. In fact, using only two layers of dic-
tionaries and 1600 parameters, our method already substantially outperforms
modern deep networks which use more than 20 layers and over 3 million pa-
rameters [10]. As a result of having fewer parameters, our approach trains
faster and requires less data.

2.2 Preliminary

2.2.1 Compressed sensing

Compressed sensing concerns the problem of recovering a signal from a small set
of measurements. In our case, we’re interested in reconstructing the depth map d
with full resolution from the sparse depth map ds produced by LiDAR. To achieve
this, certain prior knowledge of the signal is required. The most widely used prior
assumption is that the signal can be reconstructed with a sparse linear combination
of basis elements from an over-complete dictionary W. This gives an optimization
problem similar to sparse coding:

min
z
∥MWz− ds∥+ b ∥z∥0 , (2.1)

where z is the code, Wz produces our predicted depth map, and M is a diagonal
matrix with 0 and 1s on its diagonal. It’s used to mask out the unmeasured portions
of the signal, such that the reconstruction error is only applied to the pixels which
have been measured.
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The key question to apply CS in Eq. 2.1 is: 1) For high dimensional signals such
as the depth map, how to design the dictionary such that it encourages uniqueness of
the code while still being computationally feasible; 2) How to learn the dictionary
to get best reconstruction accuracy. In Sec. 2.3, we are going to show that the
dictionary can be factored into a structure equivalent to performing multi-layer
convolution, and that we can unroll the optimization of Eq. 2.1 into a network
similar to a deep recurrent neural network. This allows us to learn the dictionary
together with other hyper-parameters (e.g. b) through end-to-end training.

2.2.2 Deep Component Analysis

Equation (2.1) can be generalized to multi-layered sparse coding in which one seeks a
very high level sparse representation zℓ such that d = W1W2 . . . Wℓ−1zℓ and each
intermediate product zi = WiWi+1 . . . Wℓ−1zℓ is also sparse. This formulation
makes using a large effective dictionary computationally tractable, and when the
dictionaries have a convolutional structure it allows for increased receptive fields
while keeping the number of parameters manageable. This is further generalized to
Deep Component Analysis (DeepCA) by the recent work of Murdock et al. which
replaces the ℓ0 loss with arbitrary sparsity-encouraging penalties. The DeepCA
objective function is stated in [13] as:

min
{zi}

ℓ∑
i=1

1
2 ∥zi−1 −Wizi∥22 + Φi(zi), (2.2)

where the Φj are sparsity encouraging regularizers. Previous work has shown that
the specific choice of Φ(x) = I(x > 0) + b ∥x∥1 yields optimization algorithms
very similar to a feed-forward neural network with Relu activation functions.
By using the ADMM algorithm to solve equation (2.18), Murdock et al. create
Alternating Direction Neural Networks, a generalization of feed forward neural
networks which internally solve optimization problems with the form of (2.18).
Alternating Direction Neural Networks (ADNNs) perform the optimization in a
fully differentiable manner and cast the activation functions of each layer as the
proximal operators of penalty function Φi of that layer. This allows for learning the
dictionaries Wi and parameters b through gradient descent and back propagation
with respect to an arbitrary loss function on the sparse codes. To mirror neural
networks, Murdock et al. apply various loss functions to the highest level of codes,
which take the place of the output layer in traditional NNs. In the following
sections we will show how ADNNs can be adapted to the depth completion problem
within the framework of compressed sensing.
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2.3 Deep Convolutional Compressed Sensing

2.3.1 Inference

Directly applying compressed sensing to the DeepCA objective gives

min
{zi}

1
2 ∥ds −MW1z1∥22 +

ℓ∑
i=2

1
2 ∥zi−1 −Wizi∥22 +

ℓ∑
i=1

Φi(zi), (2.3)

where ds is the input sparse depth map. However, if we take the Wi to have
a convolutional structure then an element z1 will not be recovered if its spatial
support contains no valid depth samples. Thus, extracting the higher level codes is
itself a missing data problem and can be written the same way. This gives the full
Deep Convolutional Compressed Sensing objective:

min
{zi|i>0}

ℓ∑
i=1

1
2 ∥Mi−1zi−1 −Mi−1Wizi∥22 + Φi(zi). (2.4)

Here, to simplify notation, we merge the depth reconstruction cost (left term in
Eq. 2.3) and the reconstruction cost of the codes together, with z0 = ds and M0
denotes the mask M used in (2.3) . Each Mi is a mask encoding which elements
of zi had any valid inputs in their spatial support. In practice computing Mi is
done with a maxpooling operation with the same stride and kernel size as the
convolution represented by WT

i+1.

We solve (2.4) using the ADMM algorithm, which introduces auxiliary variables
yi that we constrain to be equal to the codes zi as below:

min
{yi,zi|i>0}

ℓ∑
i=1

1
2 ∥Mi−1yi−1 −Mi−1Wizi∥22 + Φi(yi)

s.t. zi = yi.

(2.5)

Here, we again refer the input sparse depth ds as y0. With this, the augmented
Lagrangian of (2.5) with dual variables λ and a quadratic penalty weight ρ is:

Lρ(z, y,λ) =
ℓ∑

i=1

1
2 ∥Mi−1yi−1 −Mi−1Wizi∥22 +Φi(yi)+λT

i (zi−yi)+ ρ

2 ∥zi − yi∥22 .

(2.6)
The ADMM algorithm then minimizes Lρ over each variable in turn, while keeping
all others fixed. Following Murdock et al. we will incrementally update each layer
instead of first solving for all zi followed by all yi. They show this order leads to
faster convergence. The ADMM updates for each variable are as follows:
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1. At each iteration t+1, zi is first updated by minimizing Lρ with the associated
auxiliary variable yi from the previous iteration, and zi−1 from the current
iteration fixed:

z[t+1]
i = arg min

zi

Lρ(zi, y[t+1]
i−1 , y[t]

i ,λ
[t]
i )

= (WT
i MT

i−1Mi−1Wi + ρI)−1(WT
i MT

i−1Mi−1Wy[t+1]
i−1 + ρy[t]

i − λ[t]).
(2.7)

This gives a fully differentiable update of zi but the matrix inversion is com-
putationally expensive, especially since Wi is in practice very large. To deal
with this problem we make the approximation that Wi is a Parseval tight
frame [13], that is we assume WiWT

i = I. In addition to being common
practice in autoencoders with tied weights, this assumption is also made by
Murdock et al. and has previously been explicitly enforced in deep neural
networks [23]. We can then use the binomial matrix identity to rewrite the zi

update as:

z[t+1] = ỹ[t]
i + 1

1 + ρ
WT

i MT
i−1(Mi−1y[t+1]

i−1 −Mi−1Wiỹ[t]
i ), (2.8)

where ỹ[t]
i ≜ y[t]

i − 1
ρ .

2. Similarly, the update rule for the auxiliary variables yi is:

y[t+1]
i = arg min

yi

Lρ(z[t+1]
i , z[t]

i+1, yi,λ
[t]
i )

= ϕi

(
1

1 + ρ
Wi+1z[t]

i+1 + ρ

1 + ρ
(z[t+1]

i + λ
[t]
i

ρ
)
)

yℓ = ϕi

(
z[t]

i + λ
[t]
i

ρ

)
.

(2.9)

Here ϕi is the proximal operator associated with the penalty function Φi. For
appropriate choices of Φi, ϕi is differentiable and can be computed efficiently.
With this in mind, we choose Φi(x) = I(x > 0) + b ∥x∥1 so that ϕi(x) =
ReLU(x− b

ρ).

3. Finally the dual variable λi is updated by:

λ
[t+1]
i = λ

[t]
i + ρ(z[t+1]

i − y[t+1]
i ). (2.10)

The full procedure is detailed in algorithm (1). As shown in above, all the op-
erations used in the ADMM iteration are differentiable, and can be implemented
with deep learning layers e.g. convolution, convolution transpose, and ReLU. We
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Algorithm 1: Deep Convolutional Compressed Sensing
Input : model parameters Wi, bi, iterations T , sparse depth y0 = ds, mask

M
Output: sparse codes z[T ]

i , predicted depth dpred
for i← 1 to ℓ do

z[0]
i ←WT

i MT
i−1yi−1;

y[0]
i ← ReLU(z[0]

i − b/ρ);
λ

[0]
i ← 0;

for t← 1 to T do
for i← 1 to ℓ do

Update z[t]
i using equation (2.8);

Update y[t]
i using equation (2.9);

Update λ
[t]
i using equation (2.10);

Predict dpred using equation (2.11);

unroll the ADMM iteration for a constant number of iterations T , and output our
optimized code zℓ for the last layer. We can then extract our prediction of the
depth map by applying the effective dictionary to the high level code zℓ as shown
in equation (2.11). This is different from the standard decoder portion of a deep
autoencoder, where the nonlinear activations are applied in between each convo-
lution. Our approach does not require this since the internal optimization of zℓ

enforces equality constraints between layers, which is not the case for conventional
autoencoders. We choose to reconstruct the depth from zℓ instead of a lower layer
because its elements have the largest receptive field and therefore zℓ will have the
fewest number of missing entries.

dpred = W1W2 . . . Wℓzℓ (2.11)

2.3.2 Learning

With the ADMM update unrolled to T iterations as described above, the entire
inference procedure can be thought of as a single differentiable function:

dpred = f
[T ]
DCCS(M, ds; {Wi, bi}) (2.12)

Thus the dictionaries Wi and the bias term bi which are the parameters for f
[T ]
DCCS

can be learned through stochastic gradient descent over a suitable loss function.
Using the standard sum of squared loss error, dictionary learning is formed as min-
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imizing the depth reconstruction error Lreconstruct:

min
{Wi,bi}

N∑
n=1

∥∥∥d(n)
gt −M′(n)d(n)

pred)
∥∥∥ (2.13)

Where d(n)
gt is the ground truth depth map of the nth training example. We allow

the ground truth depth map to have missing value by using mask M′(n) to segment
out the invalid pixels in the ground truth depth map.

In practice we found that due to the sparsity of the training data, the depth maps
our method predicted were rather noisy. To fix this issue we included the well known
anisotropic total variation loss (TV-L1) when training to encourage smoothness of
the predicted depth map. Note that this change has no significant impact on the
quantitative error metrics, but produces more visually pleasing outputs. The total
loss is then given by summation of the depth reconstruction loss and the TV-L1
smoothness loss, with hyper-parameter α to control the weighting for the smoothness
penalty:

L = Lreconstruct + αLTV-L1. (2.14)

We empirically determined that α = 0.1 produces the best results.

2.4 Experiments

2.4.1 Implementation Details

We implemented three variants of algorithm (1) for the cases ℓ = 1, 2, 3. For the
single layer case we let WT

1 be a 11x11 convolution with striding of 2 and 8 filters.
For ℓ = 2 we let WT

1 be an 11x11 convolution with 8 filters and W T
1 be a 7x7

convolution with 16 filters. Finally for the ℓ = 3 case: WT
1 is an 11x11 convolution

with 8 filters, WT
2 is a 5x5 convolution with 16 filters, and WT

3 is a 3x3 convolution
with 32 filters. For both ℓ = 2 and ℓ = 3, all convolutions have striding of 2. For the
single layer case we learned the dictionaries with the number of iterations set to 5
and then at test time increased the number of iterations to 20. For the two and three
layer cases the number of iterations was fixed at train and test time to 10 except in
section 2.4.4 where the number of test and training iterations is varied. All training
was done with the ADAM optimizer with the standard parameters: learning rate =
0.001,β1 = 0.9, β2 =0.999, ϵ = 10−8.

2.4.1.1 Error Metrics

For evaluation on the KITTI benchmark we use the conventional error metrics [14, 4],
e.g. root mean square error (RMSE), mean absolute error (MAE), mean absolute
relative error (MRE). We also use the percentage of inliers metric, δi which counts
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RMSE (m) MAE (m) MRE δ1 < 1.01 δ2 < 1.012 δ3 < 1.013

Bilateral NN[17] 4.19 1.09 - - - -
SGDU[18] 2.5 0.72 - - - -

Fast Bilateral Solver[19] 1.98 0.65 - - - -
TGVL[20] 4.85 0.59 - - - -

Closest Depth Pooling 2.77 0.94 - - - -
Nadaraya Watson[21, 22] 2.99 0.74 - - - -

ConvNet 2.97 0.78 - - - -
ConvNet + mask 2.24 0.79 - - - -

SparseConvNet[14] 1.82 0.58 0.035 0.33 0.65 0.82
Ma & Karaman[10] 1.68 0.70 0.039 0.21 0.41 0.59

Ours 1 Layer 2.77 0.83 0.054 0.3 0.47 0.59
Ours 2 Layers 1.45 0.47 0.028 0.41 0.68 0.8
Ours 3 Layers 1.35 0.43 0.024 0.48 0.73 0.83

Table 2.1: Validation error of various methods on the KITTI Depth Completion
benchmark. All results except for SparseConvNet and Ma’s are taken as reported
from [14]. Our method outperforms all previous state-of-the-art depth only com-
pletion methods (Middle) as well as those that use RGB images for guidance (Top).

the percent of predictions whose relative error is within a threshold raised to the
power i. Here, we use smaller thresholds (1.01i) compared to the more widely used
ones (1.5i) in oder to compare differences in performance under tighter metrics.

2.4.2 KITTI Depth Completion Benchmark

We evaluate our method on the new KITTI Depth Completion Benchmark [14]
instead of directly comparing against the LiDAR measurements from the raw KITTI
dataset. The raw LiDAR points given in KITTI are corrupted by noise, motion of
the vehicle during sampling, image rectification artifacts, and accounts to only 4%
of the total number of pixels in the image. Thus it’s not ideal for evaluating depth
completion systems. Instead, the benchmark proposed in [14] resolved these issues
by accumulating LiDAR measurements from nearby frames in the video sequences,
and automatically removing accumulated LiDAR points that deviate too far from
the points reconstructed by semi-global matching. This provides quality ground
truth and effectively simulates the main application of interest: recovering dense
depth from a single LiDAR sweep.

In Table 2.1, we form a close comparison against the very deep Sparse-to-Dense
network (Ma & Karaman [10]) and the Sparsity Invariant CNN (SparseConvNet [14])
which are the current sate-of-the-art deep learning-based method.

The Sparse-to-Dense network uses a similar deep network architecture as those
used for single shot depth prediction – with Resnet-18 as the encoder and up-
projection blocks for the decoder. While the Sparse-to-Dense network is able to
achieve good RMSE, it falls behind the SparseConvNet on MAE. We believe that
this is because the deeper network can better estimate the average depth of a region
but is unable to predict fine detail, leading to a higher MAE. By comparison, our
method is able to both estimate the correct average depth and reconstruct fine de-
tail due to its ability to directly optimize the prediction with respect to the input.
Most notably our method outperforms all of the existing methods by a wide margin,

22



Figure 2.2: Results on the KITTI
benchmark for varying levels of input
sparsity. The keep probability repre-
sents the probability that any partic-
ular LiDAR sample is retained. We
demonstrate robustness to reasonable
changes in input sparsity, outperform-
ing both baselines up to a 50% reduc-
tion in the number of input points.

Figure 2.3: Results of selected meth-
ods on the KITTI benchmarks for
varying training set sizes. Our
method performs well with training
sizes ranging from 100-86k but still
benefits from larger training sizes.

including those that use RGB images and those that use orders of magnitude more
parameters than our method.

2.4.2.1 Varying Sparsity Levels

Uhrig et al. show that their Sparsity Invariant CNNs are very robust to a mismatch
between the training and testing levels of sparsity. While we do not see a practical
use for disparities as large as those tested in [14], we do believe that depth com-
pletion systems should perform well under reasonable sparsity changes. To this end
we adjusted the level of input sparsity in the KITTI benchmark by dropping input
samples with probability p, for various values of p. The results of this experiment
are shown in Figure (2.2). While it is clear that our method does not achieve the
level of sparsity invariance of the SparseConvNet, it still outperforms both baseline
results even when the only 50% of the input samples are kept.

2.4.3 Effect of Amount of Training Data

Modern deep learning models typically have tens of thousands to millions of pa-
rameters and therefore require enormous training sets to achieve good performance.
This is in fact the motivation for the KITTI depth completion dataset, since previ-
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Figure 2.4: Results on the depth completion benchmark for different numbers of
ADMM iterations. The total error is shown in blue while the red line shows the
error on just those points given as input. The dotted lines show the same metrics
but for the SparseConvNet of Uhrig et al. [14].

ous benchmarks did not have enough data to train deep networks. In this section we
investigate the dependence on the amount of training data on the performance of
our method in comparison with a standard deep network and the sparsity invariant
variety.

Figure (2.3) shows the results of evaluating these models on the 1k manually
selected validation depth maps after training on varying subsets of the 86k training
maps. Our method outperforms both baselines for all training sizes. As expected
Ma & Karaman’s method fails to generalize well when trained on a small dataset
since the model has 3.4M parameters but performs well once trained on the full
dataset. It is interesting to observe that the method of Uhrig et al. does not gain any
performance from training on more data. As a result it is ultimately out performed
by the deep network which does not take sparsity into account. Our method is able
to perform comparably to the sparsity invariant network with only 100 training
examples but does increase in performance when given more data, validating the
need for learning layered sparse coding dictionaries from large training sets.

2.4.4 Effect of Iterative Optimization

In this section we demonstrate that the success of our approach comes from its
ability to refine depth estimates over multiple iterations. Applying a feed forward
neural network to this problem frames it as finding a mapping from sparse LiDAR
points to true depth maps. This is a reasonable approach but it doesn’t utilize all of
the available information, specifically it doesn’t encode the relationship that input
samples are a subset of the output that has been corrupted by noise. In contrast,
our approach of phrasing depth completion as a compressed sensing missing data
problem directly expresses that relationship. By solving this problem in an iterative
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fashion our network that is able to find depth maps that are both consistent with
the input constraints and have sparse representations.

The importance of iterative optimization is shown in Figure (2.4) where we
examine the performance of our method as a function of the number of ADMM
iterations it uses. It is clear that with few iterations our network fails to enforce the
constraints and performs comparably to the SparseConvNet. This is also consistent
with Murdock et al. ’s observation that a feed forward network resembles a single
iteration of an ADNN. As we increase the number of iterations our method is able
to better optimize its prediction and gains a substantial performance boost.
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Figure 2.5: Selected visual results form the KITTI benchmark. From top to bottom:
RGB Image, Ground truth, input LiDAR points, Predicted depth.
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F-footnotesize.png

Dataset Quality Fuet al. [34] Zhenget al. [52] Ours

BSD500
5 0.0466 | 26.8 | 0.768 0.0381 | 28.5 | 0.853 0.0360 | 29.05 | 0.860
10 0.0336 | 29.7 | 0.845 0.0269 | 32.1 | 0.912 0.0273 | 31.6 | 0.892
20 0.0276 | 31.5 | 0.879 0.0249 | 32.4 | 0.906 0.0218 | 33.5 | 0.918

Parameters (×105) 3.74 106.6 .782

Table 2.2: Results on BSD500 for reconstruction trained and tested at a specific
quality factor, the numbers in each cell are RMSE, PSNR, and SSIM. Best results
are in bold face, and results which are close to the best are underlined

Figure 2.6: Top row, from left to right: an image from the Berkeley Segmentation
Database compressed using JPEG, the same image degrade by our linear approx-
imation, the original image. Bottom row, a zoom of the top images to show the
blocking artifacts.

2.5 Other Inverse Problems

2.5.1 Diagonal vs Block Diagonal Inverse Problems

In this section we perform a synthetic experiment to show how the structure of the
measurement matrix greatly affects the performance of a naive CNN approach to
solving inverse problems. First we provide some intuition as to why this might be the
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Figure 2.7: Our baseline CNN architecture. It is based on the JPEG Artifact
Removal architecture of Zheng et al. . Due to the high dimensionality of the block-
diagonal transformation we first do a patch wise encoding step. The patch-wise
encoder operates on a single 4x4 patch and corresponding block of the transforma-
tion, it encodes it to a 64 channel 4x4 image which concatenated with the original
image and then fed through a standard CNN. The residual blocks are of the same
form as Zheng et al.

case. The structure of a CNN encodes the belief that the input signal has a convolu-
tional structure, that is, an individual sample is highly correlated with its neighbors.
When an image is degraded by missing data or blurring, these correlations are mod-
ified, but still persist. In these cases one would expect a CNN to perform well at
reconstructing the original signal and many results confirm this [26, 51, 44, 45]. In
these tasks the corresponding measurement matrix is diagonal or convolutional.

Now consider an inverse problem where the measurement matrix is block diag-
onal. For simplicity we will assume that the blocks are arranged such that each
4x4 patch of the image is multiplied by an arbitrary linear transformation. We will
refer to this problem as block recovery. From the perspective of solving an inverse
problem, this situation is identical to inpainting or deblurring, but we would expect
it to be much more difficult for a CNN.

To test this hypothesis we performed a synthetic experiment where we interpolate
smoothly between inpainting and block recovery and show that the performance of
a CNN degrades as we move closer to block recovery. Furthermore we will show
how our proposed CSC based method is relatively unaffected by this difference in
measurement matrix structure, even without retraining. Specifically we define a
set of learning tasks parameterized by the scalar α. In each task the input is a
measurement matrix Mi(α) and the measured image yi = Mi(α)zi, and the goal
is to recover the original image zi. We let Mi(α) = Minpainting(1 − α) + Mblockα
where Minpainting is a diagonal matrix which zeros out some pixels, and Mblock is
the previously described block diagonal transform. We use as data the Berkeley
Segmentation Dataset (BSD-500) which provides a canonical set of high resolution
images. Our baseline CNN is shown in figure 2.7, and to compare we use a three
layer CSC model. We note that for the CNN we have to retrain for different values
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Figure 2.8: The results of the synthetic expperiment on BSD-500. For each value
of α we train our CNN 5 times to convergence and then report the average of
the top three validation results. In contrast we only train our model one time at
α = 0.5 which explains why the performance of our model peaks there since the
hyper-parameters have been learned for that value.

of α but for the CSC model we simply train once at α = 0.5. The results can be
found in figure (2.8), validating our hypothesis. While interesting, this experiment
wouldn’t be useful if it didn’t lead us to some practical application. The following
experiments aim to do this by showing how two different computer vision tasks have
this block diagonal structure.

2.5.2 JPEG Artifact Removal

In the previous section we showed how when the measurement matrix is block diago-
nal, we expect our CSC based method to perform better than a CNN. The synthetic
experiment was contrived to demonstrate this, but we will now see how removing
artifacts created by the original JPEG algorithm in fact has a similar form.

The compression algorithm operates on 8x8 blocks of the image independently.
It is comprised of five steps: conversion to YCbCr space, down-sampling of chroma
channels, DCT-II transformation, rounding of DCT-II coefficients, and finally loss-
less compression of the remaining coefficients. The amount of rounding is controlled
by a scalar parameter known as the quality factor, which varies from 1 to 100. The
first three of these steps are linear transformations, and the final step is lossless and
can therefore be discarded for our purposes. The fourth step creates the well known
blocking artifacts, but is not linear. However as can be seen in Figure 2.6 the major-
ity of the artifacts are created by the frequency components which are rounded to
zero. Therefore we can make an approximation to the JPEG algorithm by ignoring
the rounding on frequency components which are not zeroed. This approximation
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is locally linear and can be expressed as MJP EG = MzeroingMDCT Mdownsample,
where we have opted to perform the experiment in YCbCr space.

Since the algorithm processes each block separately their collective action is very
similar to the previous synthetic experiment. As such a CNN would be expected to
perform very poorly if applied directly to the output of the algorithm, the DCT-II
coefficients. To avoid this issue, other authors choose to manually undo the the DCT
and downsampling operations, effectively applying the CNN to the decompressed
image. This is the approach taken by Zheng et al. [52] which we will use as
a comparison CNN architecture. We also compare against the recent work of Fu
et al. [34], who also chose to apply convolutional sparse coding to this problem.
However, there are several key differences between our approaches: First Fu et al.
bases their architecture on single layer CSC. Second, Fu et al. applies LISTA to
the objective, resulting in an network which is inspired by an optimization instead
of explicitly performing it. Finally and most importantly, Fu et al. do not model
the JPEG degradation and instead use the decompressed image as their input. As
a result of these differences we find that our method uses far fewer parameters
and achieves significantly better results. These findings are consistent with our
hypothesis that explicit modeling of the measurement matrix is key when dealing
with non-convolutional corruption.

We perform all experiments on the BSD-500 dataset for a range of quality factors.
We also perform all experiments on the full YCbCr image instead of on only the
luminance channel. Since the method of Fu et al. [34] was designed for only
a single channel input, we double the number of features in each convolution to
compensate for the larger input.

In the first experiment we fix a quality factor and train each method to predict
the original image from the compressed one. The results are show in table 2.2,
which demonstrates that when the measurement matrix is closer to block diagonal
our method achieves state of the art performance at quality factors 5 and 20 all
while using much fewer parameters than the next closest model. Furthermore we
are able to outperform both the deep sparse coding method and traditional multi-
layer CSC by a wide margin at all quality factors. This is shown in the table as well
as in the results of figure 2.11. That figure shows the results of a similar experiment
except that we use identitcal model parameters to Sulam et al. , to demonstrate
the effectiveness of learning the hyper-parameters directly from the data. Finally
we performed an experiment where we mismatch the training and testing quality
factors in order to measure the generalization of each model. Figure 2.10 shows the
results of this experiment which demonstrate that due to our method specifically
modeling the degradation, it outperforms all others by a wide margin when there is
a mismatch between testing and training degradation.
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Figure 2.9: Some example artifact removal results from BSD-500, zoomed in to
highlight the detail. From left to right: Degraded input image, target image, our
result
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Figure 2.10: A comparison of our method and that of Zheng et al. on the JPEG
artifact removal task. Note that as the degradation becomes more sever, that is the
blocks of the measurement matrix become less diagonal, we see the same kind of
fall off in performance as we did in the synthetic experiment.

2.5.3 Non-Rigid Trajectory Reconstruction

In non-rigid trajectory reconstruction, one seeks to recover the 3D trajectories of
points from their 2D projections. Zhu et al. first proposed convolutional sparse
coding for this problem in [53]. They demonstrate large performance gains through
learning the filters directly from motion-capture data. However this requires manual
tuning of the sparsity parameter which can be difficult to get right. In contrast, our
method learns this parameter without tuning. Before presenting these results we
will first give a brief description of the problem.

We refer the reader to Zhu et al. [53] for a description of how the trajetory
reconstruction problem can be phrased as a sparse coding one, and present here just
the equations for the input signal and measurement matrix.

M =

M1
. . .

MF

 , y =

y1
...

yF

 (2.15)

(2.16)
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Quality Factor Ours Sulam et al.
5 0.039 0.080
25 0.069 0.11

Figure 2.11: From top to bottom: image degraded at QF 5, our method’s output,
the method of Sulam et al. , the target image. The poor performance of the method
of Sulam et al. can be explained by the fact that these methods are very sensitive
to the choice of parameters. The dictionary is learned with one set of parameters
but there is no clear way to modify them once we introduce the JPEG degradation.
The table reports RMSE for our method and Sulam et al. at quality factors 5 and
25
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where the Mi, yi encode the weak perspective cameras and 2D points. They demon-
strate that learning the dictionary D on real motion capture data yields very im-
pressive results which are still the state of the art on this task. Using the 3D ground
truth points as supervision, we can train our end to end multi-layer CSC method
for this task using the same formulation as described previously, except now our
convolutions are in time instead of space.

NRMSE RMSE
Zhu et al. 0.025 35.91

14 Layer Trajectory CNN 0.0254 39.98
Ours 3 Layer 0.0179 27.16

Table 2.3: Results of multi-layer CSC (ML-CSC) on the trajectory reconstruction
problem. We report Normalized RMSE in addition to RMSE, to better compare
sequences of different scales. Please see [53] for a description of this metric.

        Ours
        Ground Truth
        Zhu et. al

Figure 2.12: Some example trajectories and our reconstruction results

In our experiments we replicated the setup of Zhu et al. on the CMU motion
capture dataset (mocap.cs.cmu.edu). We took each sequence, resampled them all to
30fps, created a synthetic orthographic camera which orbits the center of mass of
the tracked points at a rate of π/s, and then cut the tracks into 150 frame sequences
to form individual training examples. For validation, we hold out the sequences of
subjects 14, 94, and 114, and use the rest for training. We can see from the results
in Figure 2.3 that we are able to outperform those results by a wide margin.

We do not show results for a naive CNN on this task since they fail to produce
reasonable predictions. This is in line with our hypothesis that inverse problems
such as these are not amenable to simple CNN approaches. Instead we will show
how we can derive an modification of the input from the multi layer CSC model
that allows a simple CNN to achieve reasonable results on this task.
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Figure 2.13: Performance vs Number of layers for our proposed Trajectory CNN

(a) Fu[34]: 0.0211|33.494|0.911 (b) S-Net: 0.0190|34.4|0.930 (c) Ours: 0.0150|36.5|0.946

(d) Ground Truth (e) JPEG

Figure 2.14: Qualitative results on BSD500. The captions contain RMSE, PSNR,
and SSIM measures for each image

Recall that the first pass of our multi-layer CSC algorithm is equivalent to a feed
forward CNN. Specifically we have that on the first iteration:

x[0]
i = ReLU( 1

Li
D⊤

i x[0]
i−1 + bi). (2.17)
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However, we also have that when we have a measurement matrix M then the first
dictionary D1 should be replaced by MDi. This means that the first layer’s first
iteration is given by:

x[0]
1 = ReLU( 1

Li
D⊤

i M⊤y + b1). (2.18)

This leads to the observation that the input to the network is effectively M⊤y
instead of simply y. We note that this is similar to how in the JPEG AR task,
the input to the CNN was not the DCT coefficients but instead the decompressed
image. Since the DCT transform is orthogonal, performing the inverse compression
is very close to multiplying y by M⊤. In general the product M⊤y does not contain
all of the information required to reconstruct z, as we saw in the JPEG task as well.
But, we will now see that in the non-rigid trajectory reconstruction task enough of
the information is preserved that it allows a CNN to perform reasonably.

To give some intuition of why we expect this to work, let pi be the original 3D
point which is projected to yi by orthogonal camera Mi. Since the trajectories are
smooth in time, the pi have a convolutional structure appropriate for a CNN. This
structure is destroyed when multiplied by Mi. However, we note that MT

i Mi has
the effect of back projecting the points to the 3D space, but with the depth set to 1.
Since the cameras are smooth in time as well, the resulting trajectory is a distorted
version of the original which is smooth. Thus we expect a CNN to perform well on
this modified input. Our prediction is confirmed by the results in table 2.3. This
network is able to achieve similar results to the CSC approach but requires many
more layers to make up for the lack of iterations as shown in Figure 2.13.
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Chapter 3

Un-Supervised Recovery Problems

3.1 Introduction

Research is often guided by improving benchmark performance, but we show that
popular scene flow benchmarks may be guiding research in the wrong direction.
Scene flow, the 3D analog of optical flow [107], can help autonomous vehicles identify
moving objects. Most autonomous vehicles use LiDAR sensors for 3D perception,
creating interest in estimating the dynamic motion between successive scans [88, 59,
57, 70, 94, 80]. If this task can be accomplished without relying on labeled data,
it can give autonomous vehicles awareness of moving objects outside the detection
taxonomy[96]. The potential for label-free detection has led to significant interest in
self-supervised scene flow methods [113, 94, 57, 79]. We focus on this self-supervised
setting and show that the standard benchmarks have several fundamental flaws.
When evaluated more realistically, apparent benchmark improvements correspond
to stalled or even decreasing real-world performance (Fig. 3.1).

Most work follows the evaluation framework from FlowNet3D [88], which pri-
marily measures the average end-point-error (EPE) across FlyingThings3D [90] and
KITTI-SF [92] (now typically referred to as stereoKITTI). These datasets have sev-
eral issues: (1) stereoKITTI samples dynamic objects with an artificial pattern that
differs from the pattern on static objects, inadvertently providing part of the “an-
swer” to learning-based approaches. (2) Both FlyingThings3D and stereoKITTI
ensure successive point clouds are in one-to-one correspondence, which is never the
case for actual scans. (3) Both datasets contain an unrealistically high percentage
of dynamic points. In contrast, real-world data is dominated by the background.

Together these issues obfuscate the main challenges of LiDAR scene flow: iden-
tifying the few non-static points and estimating their motions robustly given the
lack of correspondences. We demonstrate the impact of these issues by evaluating a
suite of top methods on several large-scale real-world datasets (Argoverse, NuScenes,
Waymo), finding that performance is negatively correlated with performance on the
standard benchmarks.
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Figure 3.1: Recent self-supervised scene flow methods[113, 83, 79, 70] typically
focus on performance on stereoKITTI[88]. We call attention to several problematic
aspects of its semi-synthetic construction. When evaluated on real-world datasets
(Waymo, Argoverse, NuScenes) we find a negative correlation with stereoKITTI
performance. For each method and LiDAR dataset, we plot a point corresponding
to the self-reported end-point error on stereoKITTI versus the end-point error on
dynamic points of that method trained on real data. For each dataset, we plot the
best-fit line to visualize the correlation.

We also believe these benchmarks have led researchers to ignore the virtues of
classic optimization-based approaches. Many learning-based methods have been
proposed for first estimating and removing ego-motion[106, 70], but we show that
none outperform Iterative Closest Point (ICP). Furthermore, we show that the
common pre- and post-processing steps of ground removal and enforcing piecewise-
rigidity have a larger impact on performance than any learning strategy. We show
this through a baseline method that combines these steps with a test-time opti-
mization flow method. This baseline, without any learning, outperforms every
method in our suite and outperforms all self-supervised methods on the self-reported
NuScenes [90] and lidarKITTI [70] benchmarks. This leads to the conclusion that
current learning methods fail to extract information not present in a single example
despite using large amounts of data.

In summary, our main contributions are:

• An investigation of the weakness of current self-supervised scene flow evalua-
tions.

• A dataless flow method which gives state-of-the-art results.
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• A standard evaluation protocol and codebase along with a “model-zoo” of top
methods as well as flow labels for Argoverse 2.01.

3.2 Related Work

Scene Flow: Scene flow was introduced by [108], who posed the problem in the stereo
RGB setting and spawned a large body of subsequent work [56, 61, 72, 75, 73, 91,
101, 100, 110, 111]. A related problem is non-rigid registration [54, 63, 85, 77, 99],
which is focused on fitting dense point clouds or meshes. We are interested in the
setting without images, based purely on sparse LiDAR point clouds.

Optimization based LiDAR Scene Flow: Dataless LiDAR scene flow estimation
was first proposed by Dewan et al. [64]. Inspired by a non-rigid registration method
regularized by the graph Laplacian [66], Pontes et al. [102] created an improved
method. Their results were further improved upon by Li et al. [87] with the
implicit regularization of coordinate networks [55, 62, 93, 98, 105]. We use [87]
as the backbone of our baseline and additionally employ coordinate networks for
height-map estimation. Apart from these, the vast majority of recent methods have
focused on deep learning based solutions.

Self and Weakly-Supervised LiDAR Scene Flow: “Just Go with the Flow” [94]
demonstrated that using a combination of nearest-neighbor and cycle consistency
losses was enough to train the FlowNet3D network, avoiding the reliance on la-
beled data. This led to many other works which adopted similar losses [113, 106,
83, 57]. Others made use of easier to acquire sources of supervision such as fore-
ground/background segmentation masks [70, 65] or addressed the synthetic to real
domain gap [79]. Of particular relevance are those methods which make use of ego-
motion estimation and piecewise rigid representations [70, 65, 86]. We show that
these steps are critical to good performance, but find that ICP vastly outperforms
learned approaches and that piecewise rigidity is more effective as a post-processing
step than as a loss regularizer.

Ground Segmentation: In robotics, ground segmentation has been studied as a
subset of general dataless segmentation [95], traversable area identification [74], and
as a pre-processing step for object detection, classification and tracking [114, 97, 78,
84]. Current scene flow methods do not make use of these sophisticated methods
and instead rely on basic plane fitting [57, 71, 96]. In order to show how even small
improvements to pre- and post- processing steps can drastically improve scene flow
estimation, we propose a simple segmentation method based on coordinate networks.

1Code, weights, and outputs for all the evaluated methods will be released
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Figure 3.2: The correlation between performance on stereoKITTI and performance
on real datasets as a function of how much those datasets violate the one-to-one
correspondence assumption present in stereoKITTI. The more a dataset violates
this assumption (higher chamfer distance due to sparser pointclouds), the worse the
correlation with stereoKITTI performance.

3.3 Benchmark Issues

Most self-supervised flow estimation works inherit their evaluation protocol from
[88], which is based on the synthetic FlyingThings3D [90] and stereoKITTI [92, 69].
Both were created for evaluating RGB-based flow methods and [88] extended them to
point clouds by lifting the optical flow and depth annotations to 3D. These datasets
and protocols suffer from three main deficiencies.

The one-to-one correspondence assumption removes the main challenge of work-
ing with LiDAR data. Since both FlyingThings3D and stereoKITTI are created by
lifting optical flow annotations, the point clouds for each input pair are in one-to-one
correspondence. For each 3D point pi and ground truth 3D flow fi in the first frame,
there exists a 3D point qi in the second frame such that pi + fi = qi. Real-world
LiDAR scans do not have this property. The presence of correspondences funda-
mentally changes the LiDAR scene flow problem into a point-matching problem. It
has been claimed that randomly sub-sampling the input breaks this correspondence.
However, given the total number of points in each scan (90k) and the number of
sub-sampled points (8192), there are still an expected 745 corresponding points in
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Figure 3.3: The performance of ICP and NSFP versus the ratio of dynamic points
in each example. The green region indicates the ratio found in real data and the
red region indicates the ratio found in the stereoKITTI dataset. The unrealistic
dynamic ratio of stereoKITTI causes ICP to appear to perform worse than it does
on real-world data such as Argoverse.

the input. Since each example has only a handful of independent motions, these
correspondences are enough to constrain the solution.

This problem is especially severe for self-supervised scene flow methods
trained using the chamfer distance, a symmetric extension of the nearest neighbor
distance[94]. Essentially, each method deforms the first point cloud using the
predicted flows and then computes the distance to the second point cloud. The
chamfer distance is an excellent self-supervised objective for point clouds with
one-to-one correspondences since the ground truth flow achieves the minimum
distance of 0. However, for real-world point clouds with no correspondences the
chamfer distance becomes a weaker proxy, and even the ground truth flow will have
a non-zero distance. We can quantify this effect by computing the chamfer distance
of the ground truth flows for several real-world datasets. In Fig. 3.2 we show the
relationship between that quantity and the slopes of the best-fit lines shown in
Fig. 3.1. As can be seen, the more a dataset violates the one-to-one assumption,
the more good performance on stereoKITTI indicates poor performance on that
dataset.

Current benchmarks’ unrealistic rates of dynamic motion make estimating ego-
motion seem harder than it is. In any scene, some portion of the measured points
belong to the static background rather than dynamically moving objects. In real-
world LiDAR scans such as those in NuScenes [60], Waymo [80], or Argoverse 2 [112],
the percentage of static points is very high, ranging from 85-100% (Fig. 3.4). In
contrast, FlyingThings3D has 0% static points since it consists of flying things, and
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Figure 3.4: An analysis of the motion profile of points found in various autonomous
driving datasets. The leftmost column is the percentage of points belonging to
any tracked object. The right three columns show those points separated by their
speed once ego-motion has been removed. All three datasets have a very low rate
of dynamic foreground points, in contrast to the typical stereoKITTI benchmark.

the KITTI-SF dataset has approximately 75-85% static points. Dealing with this
data imbalance is one of the key difficulties of self-supervised flow estimation but it
is not present in the popular benchmarks. This discrepancy also explains why ICP
has been ignored as a technique for ego-motion estimation[88].

In order to understand why recent methods have neglected ICP, we need to
understand how the amount of dynamic points in a scene affects the performance of
ICP. We manually re-sampled each example in the Argoverse 2.0 validation dataset
to take a specified number of dynamic and static points and then ran a test-time
optimisation scene flow method [87] and ICP [61]. The results (Fig. 3.3) show
that when looking at the total EPE averaged over the entire dataset, like most
evaluations, the performance of ICP steadily degrades as the percentage of dynamic
points increases. At 20% dynamic points, double the rate of real-world data but
approximately the same ratio as KITTI-SF, ICP’s performance has degraded to
significantly below the performance of NSFP. This explains why early methods which
did include ICP in their comparisons [88] were able to outperform it, leading future
methods to leave it out even as more realistic data became available.

The sampling pattern of dynamic objects in stereoKITTI gives away the answer
in the input. The ground truth flow and disparity of KITTI-SF were created by
fitting 3D models to the LiDAR points and 2D annotations [91]. This gives the
dynamic objects a distinctive dense sampling pattern that separates them from the
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Figure 3.5: Comparison of sampling patterns from KITTI-SF (left) versus the corre-
sponding real LiDAR scan (right). KITTI-SF uses dense CAD models for foreground
objects, which makes it easier for learning-based methods to find them among the
sparse LiDAR background points.

Figure 3.6: An example ground truth segmentation from KITTI-SF (left) compared
with (right) an example prediction from our local model. Note how the model
can even identify parked vs moving cars since only moving vehicles have the dense
sampling pattern.

background (see Fig. 3.5). However, determining which points belong to moving
objects is one of the main challenges and the sampling pattern effectively gives
away the answer in the input. We demonstrate that learning-based system can
simply identify moving objects by the sampling pattern without learning anything
about the motion.

Model: We use a model that takes a small amount of local context and no
information from the second frame, to predict motion segmentation for a point p.
That is, the input to our network is the set of vectors {q − p | ∀q ∈ Nr(p)} where
Nr is a ball of radius r centered at p. We use r = 0.05 m in our experiment. Then
we use a standard PointNet architecture to predict a binary label for the point.

Training: We train our model on the first 150 examples of KITTI-SF and test on
the remaining 50. Note this is essentially the split used by FlowNet3D[88] and the
recent RigidFlow[86] for fine-tuning. We train our network using a cross-entropy
loss weighted by the inverse frequency of each label. For comparison, we perform
the same experiment on real LiDAR scans from Argoverse. We sample 150 scans
from the train set and 50 scans from the validation set.

Results: Using only information in a 5 cm ball around each point we are able to
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segment KITTI-SF with high accuracy. We achieve a mean intersection over union
on the foreground of 0.83 and 0.97 on the foreground. An example is visualized in
Fig. 3.6. In comparison when we attempt this on real LiDAR scans that do not have
a biased sampling pattern, we achieve foreground and background mean intersection
over union scores of 0.16 and 0.81 respectively. This demonstrates that the sampling
pattern of KITTI-SF makes it trivial to identify foreground points and should not
be used for training or validation.

3.3.1 Real-World Flow Evaluation

Due to these deficiencies, recent works have made progress on improving results on
these benchmarks without improving results on real-world data (Fig. 3.1). Some of
the problems could perhaps be addressed through re-sampling, but doing so requires
modifying the data based on the ground truth static-vs-dynamic labels. This runs
counter to the goal of creating methods that operate on raw, unlabeled data.

Some works have evaluated on real LiDAR data by transferring synthetic la-
bels [70], or more commonly by computing flows from object-level tracks [57, 80,
79, 87]. However, those evaluations have been presented as auxiliary results [57, 87]
with limited comparisons to existing methods, or without comparison entirely [80].
As a result, KITTI-SF and FlyingThing3D remain the standard benchmarks. We
argue that evaluating on real-data should be the “gold-standard” for scene flow as
opposed to synthetic benchmarks.

To further emphasise how top learning-based methods fail when evaluated prop-
erly on real data, we also demonstrate that they can be outperformed by a simple
test-time optimization baseline. We construct this baseline by making small im-
provements to standard pre- and post-processing steps and wrapping them around
neural scene flow prior.

3.4 Baseline

Our pipeline (Fig. 4.4), consists mainly of pre- and post-processing steps around the
test-time flow optimization method of [87].

Motion Compensation: Since real-world scenes consist mostly of static back-
ground objects, removing the ego-motion of the sensor makes estimating the dynamic
motion significantly easier (Fig. 3.8). For datasets such as Argoverse or Waymo, the
ego-motion is provided and we transform the first scan into the coordinate frame
of the second. NuScenes and lidarKITTI also have this information but previous
work has opted to not use it. In this case, we use ICP [61, 109] to first estimate the
ego-motion. We demonstrate experimentally that this is much more effective than
learned approaches.

Ground Removal: The sampling pattern of a LiDAR sensor creates “swimming”
artifacts as the sensor moves. These artifacts create the appearance of motion and
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Figure 3.7: Our proposed pipeline for LiDAR scene flow based largely on classical
pre- and post-processing.

EPE

Figure 3.8: Comparison between NSFP with our proposed pre and post processing
steps (left) and standard NSFP (right). In the (bottom) views points are color
coded by EPE. The (top) detail views show the first and second frames aligned by
the predicted flow. NSFP struggles to represent both foreground and background
motion. We find that first using ICP to remove ego-motion greatly improves the
estimates on dynamic points.

Figure 3.9: An example of our ground removal technique on a Waymo [80] scene
with a non-planar ground. In all images, color coding indicates the height of each
point. From left to right: the input point cloud, the result of thresholding, our
result.
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present a large problem for the nearest neighbor loss function used by almost all
self-supervised methods. The largest artifacts come from the ground, leading most
methods to remove them by height thresholding or by fitting a plane [57, 88]. This
can fail when the ground changes elevation either from hills or even sidewalks, see
Fig. 3.9. We propose an improvement based on analyzing the assumptions behind
the current approaches. These assumptions are:

1. The sensor has been calibrated such that the ground can be represented as a
height map h = f(x, y).

2. Except for a small number of noise returns, all measured points (x, y, z) satisfy
z ≥ f(x, y)

3. The ground function f(x, y) is in some way “simple”. Existing methods make
use of this assumption by requiring f(x, y) = c for thresholding or f(x, y) =
ax + by + c for plane fitting.

The issue comes from an overly strict application of assumption (3). Instead, we
allow our height map to be piecewise linear rather than linear. To represent our
piecewise linear height map we use a 3-layer coordinate network with ReLU acti-
vations and 64 hidden units per layer. To fit it we use assumption (2) to design a
one-sided robust loss:

Lheight(h, z) =
{

(h− z)2 z < h

Huber(h, z) h ≤ z
. (3.1)

The Huber function [76] allows the loss to ignore points high above the ground. For
each point cloud the parameters of our height-map θh are found by optimizing

min
θh

N∑
i=1
Lheight(fθh

(xi, yi), zi). (3.2)

Finally, any points which are less than 0.3m above our predicted ground are removed.
Scene Flow Estimation: Once the ego-motion and ground points have been re-

moved, we estimate the scene flow using the method of Li et al. [87]. Briefly,
this means that we represent the forwards and backward flow using two coordinate
networks fθfw

, fθbw
∈ RN×3 → RN×3 which are optimized with gradient descent on

the objective:

min
θfw,θbw

C(gθfw
(Pt), Pt+∆) + C(gθbw

(gθfw
(Pt)), Pt). (3.3)

For compactness, we have let g(X) = f(X) + X and C be the truncated symmetric
chamfer distance as described in [87]. We differ from the original method in that
we do not use ℓ2 regularization on the weights. We find that when combined with
motion compensation that regularization leads to zero flow predictions everywhere.
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EPE

Figure 3.10: Optimizing for the standard nearest neighbor self-supervised loss can
cause mis-predictions in the presence of strong occlusions. Here, the bed of the
truck is collapsed into the cab by NSFP (left). Our RANSAC non-rigid refinement
step can fix this type of error (right).

Rigid Refinement: Piecewise rigidity has been a common choice of prior for scene
flow estimation and has been widely used for LiDAR scene flow [70, 65, 57]. Many
learning-based methods require differentiable rigid refinement for loss functions, but
we show that simply fitting rigid motion to the final predictions performs better.
This is similar to the method of [70] but we use RANSAC to filter outliers. First
we use DBSCAN [67] to produce a set of clusters {Vj = {pk}Kk=1}Jj=1. Then for
each cluster, we use RANSAC [68] to fit a rigid model to flow predictions for that
cluster. That is for each RANSAC iteration we randomly sample 3 points p1, p2, p3
(the minimum required to get a unique solution) and their associated flow vectors
f1, f2, f3 and then fit rigid motion parameters by solving:

min
R∈SO(3),t∈R3

3∑
i=1
∥Rpi + t− (pi + fi)∥22, (3.4)

with the Kabsch algorithm [81]. We then compute the norm of the difference between
the raw and rigid flows, considering any below a threshold to be inliers. At the end
of T iterations the rigid parameters with the highest number of inliers are selected
and the parameters are recomputed with respect to the inlier set producing R∗, t∗.
Since we know that with motion-compensated inputs the vast majority of flows
should be zero, we further refine the flows by setting the rigid motion parameters to
the identity transform if ∥t∗∥2 is below a threshold. Then all points in the cluster
are assigned the flow fi = R∗pi + t∗ − pi. Points that were not assigned to any
cluster by DBSCAN have their predictions unchanged. The effect of this step can
be seen in Fig. 3.10.
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Supervision
EPE AccR AccS

Avg Dynamic Static Dynamic Dynamic

FG FG BG FG FG

Gojcic [70] Weak 0.083 0.155 0.064 0.032 0.650 0.368
EgoFlow [106] Weak 0.205 0.447 0.079 0.090 0.111 0.018
Sim2Real [79] Synth 0.157 0.229 0.106 0.137 0.565 0.254

PPWC [113] Self 0.130 0.168 0.092 0.129 0.556 0.229
FlowStep3D [83] Self 0.161 0.173 0.132 0.176 0.553 0.248

Odometry None 0.198 0.583 0.010 0.000 0.108 0.002
ICP [61] None 0.204 0.557 0.025 0.028 0.112 0.015
NSFP [87] None 0.088 0.193 0.033 0.039 0.542 0.327
Ours None 0.055 0.105 0.033 0.028 0.777 0.537

Table 3.1: Quantitative results on Argoverse 2. Our baseline predicts the motion
of dynamic objects by 30% over [70], despite that method using ground truth fore-
ground masks for training. We also see from the static background EPE that ICP
outperforms learning-based methods at predicting ego-motion.

Supervision
EPE AccR AccS

Avg Dynamic Static Dynamic Dynamic

FG FG BG FG FG

Gojcic [70] Weak 0.084 0.145 0.060 0.047 0.714 0.436
EgoFlow [106] Weak 0.236 0.520 0.074 0.114 0.105 0.022
Sim2Real [79] Synth 0.214 0.305 0.143 0.194 0.426 0.155

PPWC [113] Self 0.156 0.197 0.097 0.173 0.468 0.183
FlowStep3D [83] Self 0.156 0.155 0.090 0.224 0.660 0.370

ICP None 0.176 0.450 0.033 0.046 0.151 0.047
NSFP None 0.088 0.130 0.034 0.101 0.711 0.447
Ours None 0.055 0.061 0.020 0.083 0.891 0.681

Table 3.2: Quantitative results on NuScenes. Our baseline halves the EPE on
dynamic objects when compared to the next best method (NSFP). Since our baseline
also uses NSFP as its backbone, this indicates that pre- and post-processing steps
can have an enormous impact. Again we also see that ICP has the best ego-motion
prediction.

3.5 Evaluation
Our central claim is that the use of popular benchmarks causes leading methods to
degrade in quality when evaluated on real-world data. The main result in support
of this is shown in Fig. 3.1; here we detail the procedure used to select, train, and
evaluate the tested methods (Sec. 3.5.1). We also discuss the performance of our
baseline, which we find outperforms all the tested methods, as well as validate these
results through comparison to other authors’s self-reported metrics on NuScenes
and lidarKITTI (Sec. 3.5.2). Finally, we evaluate our ground segmentation method
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Supervision
EPE AccR AccS

Avg Dynamic Static Dynamic Dynamic

FG FG BG FG FG

Gojcic [70] Weak 0.059 0.108 0.045 0.025 0.844 0.584
EgoFlow [106] Weak 0.183 0.390 0.069 0.089 0.178 0.046
Sim2Real [79] Synth 0.132 0.180 0.075 0.142 0.497 0.217

PPWC [113] Self 0.132 0.180 0.075 0.142 0.497 0.217
FlowStep3D [83] Self 0.169 0.152 0.123 0.232 0.708 0.405

ICP None 0.192 0.498 0.022 0.055 0.172 0.047
NSFP None 0.100 0.171 0.021 0.108 0.539 0.331
Ours None 0.041 0.073 0.013 0.039 0.877 0.726

Table 3.3: Quantitative results on Waymo. Our baseline outperforms all tested
methods but notably in this instance [70] performs better than ICP at predicting
the background ego-motion.

Moving Static 50-50

EPE Accuracy Relax EPE EPE

Zero 0.6381 0.1632 0.5248 0.5814
ICP 0.2101 0.6151 0.0290 0.1196
PPWC 0.3539 0.2543 0.1974 0.2756
EgoFlow 0.7399 0.0000 0.0570 0.3985
SLIM (U) 0.1050 0.7365 0.0925 0.0987
Ours 0.0625 0.894 0.0660 0.064

SLIM (S) 0.0702 0.8921 0.0499 0.0600

Table 3.4: The results of our baseline on NuScenes as evaluated by Baur et al. [57].
U and S refer to the unsupervised and fully-supervised versions of their method.
Our dataless baseline outperforms all self-supervised methods and even achieves
comparable and superior results to the fully supervised network.

Supervision EPE AccS AccR

PPWC [113] Full 0.710 0.114 0.219
FLOT [103] Full 0.773 0.084 0.177

MeteorNet [89] Full 0.277 / /

Gojcic [70] Weak 0.133 0.460 0.746
Gojcic++ Weak 0.102 0.686 0.819
Dong (Waymo Open) [65] Weak 0.077 0.812 0.906
Dong (Semantic KITTI) Weak 0.065 0.857 0.940

Ours None 0.061 0.917 0.962

Table 3.5: Results of our method on lidarKITTI w/ ground [70]. We outperform all
existing methods without using any training data.
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(Sec. 3.5.3).

3.5.1 Training and Evaluation Protocol

Evaluation Metrics: We use a set of standard metrics:

• EPE: Average end-point-error i.e. the ℓ2 norm of the difference between pre-
dicted and ground truth flow.

• Accuracy Relax: Ratio of predictions with absolute EPE less than 0.1m or
relative error below 0.1.

• Accuracy Strict: Same as Accuracy Relax but with a threshold of 0.05.

Rather than averaging these metrics over the entire dataset, we break them into
three classes of points: dynamic foreground, static foreground, and static back-
ground. Points are considered belonging to the foreground if they are contained in
the bounding box of some tracked object and they are considered dynamic if they
have a flow magnitude of at least 0.5 m s−1. The choice of threshold is discussed in
the supplement. Separating the metrics in this way is vital due to the low ratio of
dynamic to static points, without it the metrics are dominated by performance on
the static background. In order to produce a single number for ranking purposes
we combine the EPE results on the classes into a three-way average similar to [57].
In order to save computation we evaluate on a subset on of each dataset’s valida-
tion split. We use the entire NuScenes validation set, and every 5th frame of the
Argoverse and Waymo validation sets.

Method Selection: We chose to evaluate 6 methods to serve as a thorough ex-
ploration of recent research. Methods were chosen if they presented a self or weakly
supervised method, appeared in a recent conference, and made available a work-
ing implementation of their method. This led us to choose: PointPWC Net [113],
EgoFlow [106], FlowStep3D [83], NSFP [87], Sim2Real [79], and Gojcic et al. [70].
Additionally, we include as baselines an off-the-shelf ICP [58] implementation [109].
Most of the baseline methods clip points to a depth of 35m [113, 79, 106, 83]. To
make comparisons fair we only include points contained in a 70m square around the
sensor as was done in [57].

Training Procedure: As much as possible we attempted to use the same training
strategy as the original authors, but we also wished to enforce standardization on
the amount of computing resources allocated to each method. As a result, we chose
to adopt the two-stage training regime from [113]. First, we train for seven days on
a quarter of the whole training set followed by five days of fine-tuning on the entire
dataset. Each method was trained using the largest batch size possible on a single
NVIDIA T4 GPU (some methods were not set up for multi-GPU training), and
using the authors’ optimizer and learning rate schedule. Methods that were able
to include ground truth ego-motion in their loss formulation were also given that
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information. We also used ground truth foreground/background masks to train the
weakly supervised method [70]. The only method that required substantial changes
was [79] as its training is based on transferring information from a synthetic labeled
dataset. The synthetic data comes from a virtual depth camera, so we clip the
LiDAR points to match the field of view.

Results: Our results can be found in tables 3.1, 3.2, and 3.3. The main result
in Fig. 3.1 was created by taking the dynamic foreground error for each learning
method/dataset combination and plotting it against their self-reported stereoKITTI
error. We use the dynamic foreground EPE since this is the hardest and most
important component of the real-world scene flow problem. We remove EgoFlow
from these plots since it is a large outlier in terms of both real-world dynamic EPE
and stereoKITTI EPE.

We also claim that synthetic benchmarks are causing researchers to focus on
the wrong problems, which we test by comparing the tested methods to our simple
test-time optimization baseline. Validating this claim, we can observe that our
baseline outperforms all tested methods despite not using any training data; even
Gojcic et al. who use ground truth foreground masks. Each tested method claims
some learning-based novelty as its main contribution, which is then shown to be
effective through experiments on KITTI-SF and FlyingThings3D. However, none
can outperform a carefully designed baseline when evaluated on real data. Further
validating this claim is the fact that no method was able to match the performance
of ICP at predicting the ego-motion. This is in spite of the fact that several of the
methods [70, 57, 106] explicitly claim ego-motion predictions as a benefit of their
architectures. As discussed in Sec. 3.3, this results from the unrealistic dynamic ratio
found in the standard benchmarks. Gojcic et al. comes the closest to outperforming
ICP and does so on Waymo. However, this is because it essentially incorporates ICP
as a part of its final test-time refinement of the ego-motion.

3.5.2 Existing Benchmark Comparison

There may be some concern that the tested methods performed poorly compared
to the baseline due to a lack of tuning of hyperparameters. To address this concern,
we also compare our baseline to self-reported metrics on two real-world datsets:
NuScenes as evaluted in [57] and lidarKITTI which was introduced by the Gojcic et
al. [70].

NuScenes: The authors of SLIM [57] also reported numbers on real-world data.
As can be seen in Tab. 3.4 our method vastly outperforms SLIM and the other
methods they tested on the main 50-50 EPE metric, dynamic EPE, and dynamic
accuracy. Again, ICP performs far better than every other method on static points.
We also include the SLIM results when trained in a supervised manner and show
that we achieve comparable and some superior results, despite not using any training
data.

lidarKITTI: lidarKITTI [70] was generated by associating KITTI-SF labels with
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the raw LiDAR scans. We use the version with ground points as ground removal
is a component of our method. Ground point flow is set to the ego-motion. The
results are shown in Tab. 3.5 and further confirm that our baseline performs well
even compared to self-reported numbers. It substantially outperforms all but one
of the existing self- and weakly-supervised methods.

3.5.3 Ground Segmentation

We close with an evaluation of our ground segmentation method. First, we present a
qualitative example (Fig. 3.9) showing our method effectively handling a scene with
a non-planar ground. To quantitatively analyze our method we need to consider
what constitutes failure. The subtlety lies in the ill-defined nature of the ground,
making it impossible to define normal precision and recall metrics. Given that our
goal is motion estimation, the failure we are most concerned with is classifying a
dynamic point as belonging to the ground. Therefore we look at the rate at which
we make this error. On NuScenes we find that 99.3% of the time points which are
classified as ground are in fact static and achieve a rate of 99.4% on Waymo.

3.6 Conclusion

We re-examined the evaluations of self- and weakly- supervised scene flow methods
in the context of autonomous driving and found several deficiencies. We claimed
that these deficiencies are impacting the quality and types of recently proposed
methods. To provide evidence for this claim we evaluated a large number of top
methods on several real-world datasets. We found a negative correlation between
performance on the standard stereoKITTI benchmark and performance on all of the
real-world datasets. Additionally, we proposed a dataless estimation technique that
far outperformed the existing approaches, demonstrating that focus on the current
benchmarks is causing researchers to ignore effective methods. Given that our base-
line is based on pre- and post-processing techniques, we believe that other methods
not based on test-time optimization will also benefit from them.

3.7 Student/Teacher Distillation

We propose Scene Flow via Distillation (SFvD), a simple, scalable distillation frame-
work that creates a new class of scene flow estimators by using a label-free opti-
mization method to produce pseudo-labels to supervise a feedforward model (Fig-
ure 3.11). While conceptually simple, efficiently instantiating SFvD requires careful
construction; most online optimization methods and feedforward architectures are
unable to efficiently scale to full-size point clouds (Section 3.7.1).

Based on our scalability analysis, we propose Zero-Label Scalable Scene Flow
(ZeroFlow), a family of scene flow models based on SFvD that produces fast, state-
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Figure 3.11: The Scene Flow via Distillation (SFvD) framework, which describes a
new class of scene flow methods that produce high quality, human label-free flow at
the speed of feedforward networks.

of-the-art scene flow estimates for full-size point clouds without any human labels.
ZeroFlow uses Neural Scene Flow prior (NSFP) [127] to generate high quality, label-
free pseudo-labels on full-size point clouds (Section 3.7.2) and FastFlow3D [122] for
efficient inference (Section 3.7.3).

3.7.1 Scaling Scene Flow via Distillation to Large Point Clouds

Popular AV datasets including Argoverse 2 ([144], collected with dual Velodyne
VLP-32 sensors) and Waymo Open ([138], collected with a proprietary lidar sensor
and subsampled) have full-size point clouds with an average of 52,000 and 79,000
points per frame, respectively, after ground plane removal. For practical applica-
tions, sensors such as the Velodyne VLP-128 in dual return mode produce up to
480,000 points per sweep [140] and proprietary sensors at full resolution can pro-
duce well over 1 million points per sweep. Thus, scene flow methods must be able
to process many points in real-world applications.

Unfortunately, most existing methods focus strictly on scene flow quality for toy-
sized point clouds, constructed by randomly subsampling full point clouds down to
8,192 points [79, 106, 113, 83, 128, 127]. As we are motivated by real-world applica-
tions, we instead target scene flow estimation for the full-sized point cloud, making
architectural efficiency of paramount importance. As an example of stark differences
between feedforward architectures, FastFlow3D [122], which uses a PointPillar-
style encoder [124], can process 1 million points in under 100 ms on an NVIDIA
Tesla P1000 GPU (making it real-time for a 10Hz LiDAR), while methods like
FlowNet3D [128] take almost 4 seconds to process the same point cloud.

We design our approach to efficiently process full-size point clouds. For SFvD’s
pseudo-labeling step, speed is less of a concern; pseudo-labeling each point cloud
pair is offline and highly parallelizable. High-quality methods like Neural Scene
Flow Prior (NSFP, [127]) require only a modest amount of GPU memory (under
3GB) when estimating scene flow on point clouds with 70K points, enabling fast
and low-cost pseudo-labeling using a cluster of commodity GPUs; as an example,

52



pseudo-labeling the Argoverse 2 train split with NSFP is over 1000× cheaper than
human annotation. The efficiency of SFvD’s student feedforward model is critical,
as it determines both the method’s test-time speed and its training speed (faster
training enables scaling to larger datasets), motivating models that can efficiently
process full-size point clouds.

3.7.2 Neural Scene Flow Prior is a Slow Teacher

Neural Scene Flow Prior (NSFP, [127]) is an optimization-based approach to scene
flow estimation. Notably, it does not use ground truth labels to generate high quality
flows, instead relying upon strong priors in its learnable function class (determined
by the coordinate network’s architecture) and optimization objective (Equation 3.5).
Point residuals are fit per point cloud pair Pt, Pt+1 at test-time by randomly ini-
tializing two MLPs; one to describe the forward flow F̂ + from Pt to Pt+1, and one
to describe the reverse flow F̂ − from Pt + F̂t,t+1 to Pt in order to impose cycle
consistency. The forward flow F̂ + and backward flow F̂ − are optimized jointly to
minimize

TruncatedChamfer(Pt + F̂ +, Pt+1) + TruncatedChamfer(Pt + F̂ + + F̂ −, Pt) , (3.5)

where TruncatedChamfer is the standard Chamfer distance with per-point distances
above 2 meters set to zero to reduce the influence of outliers.

NSFP is able to produce high-quality scene flow estimations due to its choice of
coordinate network architecture and use of cycle consistency constraint. The coordi-
nate network’s learnable function class is expressive enough to fit the low frequency
signal of residuals for moving objects while restrictive enough to avoid fitting the
high frequency noise from TruncatedChamfer, and the cycle consistency constraint
acts as a local smoothness regularizer for the forward flow, as any shattering effects
in the forward flow are penalized by the backwards flow. NSFP provides high quality
estimates on full-size point clouds, so we select NSFP for ZeroFlow’s pseudo-label
step of SFvD.

3.7.3 FastFlow3D is a Fast Student

FastFlow3D [122] is an efficient feedforward method that learns using human su-
pervisory labels F ∗

t,t+1 and per-point foreground / background class labels. Fast-
Flow3D’s loss minimizes a variation of the End-Point Error that reduces the impor-
tance of annotated background points, thus minimizing

1
∥Pt∥

∑
p∈Pt

σ(p)∥F̂t,t+1(p)− F ∗
t,t+1(p)∥2 (3.6)

where

σ(p) =
{

1 if p ∈ Foreground
0.1 if p ∈ Background .

(3.7)
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FastFlow3D’s architecture is a PointPillars-style encoder [124], traditionally used
for efficient LiDAR object detection [139], that converts the point cloud into a birds-
eye-view pseudoimage using infinitely tall voxels (pillars). This pseudoimage is then
processed with a 4 layer U-Net style backbone. The encoder of the U-Net processes
the Pt and Pt+1 pseudoimage separately, and the decoder jointly processes both
pseudoimages. A small MLP is used to decode flow for each point in Pt using the
point’s coordinate and its associated pseudoimage feature.

As discussed in Section 3.7.1, FastFlow3D’s architectural design choices make
fast even on full-size point clouds. While most feedforward methods are evaluated
using a standard toy evaluation protocol with subsampled point clouds, FastFlow3D
is able to scale up to full resolution point clouds while maintaining real-time perfor-
mance and emitting competitive quality scene flow estimates using human supervi-
sion, making it a good candidate for the distillation step of SFvD.

In order to train FastFlow3D using pseudo-labels, we replace the foreground /
background scaling function (Equation 3.7) with a simple uniform weighting (σ(·) =
1), which collapses to Average EPE. Additionally, we depart from FastFlow3D’s
problem setup in two minor ways: we delete ground points using dataset provided
maps, a standard pre-processing step [119], and use the standard scene flow problem
setup of predicting flow between two frames instead of predicting future flow vectors
in meters per second

In order to take advantage of the unlabeled data scaling of SFvD, we expand
FastFlow3D to a family of models by designing a higher capacity backbone, produc-
ing FastFlow3D XL. This larger backbone halves the size of each pillar to quadruple
the pseudoimage area, doubles the size of the pillar embedding, and adds an addi-
tional layer to maintain the network’s receptive field in metric space; as a result,
the total parameter count increases from 6.8 million to 110 million.

3.8 Experiments

ZeroFlow provides a family of fast, high quality scene flow estimators. In order to
validate this family and understand the impact of components in the underlying
Scene Flow via Distillation framework, we perform extensive experiments on the
Argoverse 2 [144] and Waymo Open [138] datasets. We compare to author imple-
mentations of NSFP [127] and [119], implement FastFlow3D [122] ourselves (no
author implementation is available), and use [119]’s implementations for all other
baselines.

As discussed in [119], downstream applications typically rely on good quality
scene flow estimates for foreground points. Most scene flow methods are evaluated
using average Endpoint Error; however, roughly 80% of real-world point clouds are
background, causing average EPE to be dominated by background point perfor-
mance. To address this, we use the improved evaluation metric proposed by [119],
Threeway EPE.
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3.8.1 How does ZeroFlow perform compared to prior art on real point
clouds?

The overarching promise of ZeroFlow is the ability to build fast, high quality scene
flow estimators that improve with the the availability of large-scale unlabeled data.
Does ZeroFlow deliver on this promise? How does it compare to state-of-the-art
methods?

To characterize the ZeroFlow family’s performance, we use Argoverse 2 to per-
form scaling experiments along two axes: dataset size and student size. For our
standard size configuration, we use the Argoverse 2 Sensor train split and the stan-
dard FastFlow3D architecture, enabling head-to-head comparisons against the fully
supervised FastFlow3D as well as other baseline methods. For our scaled up dataset
(denoted 3X in all experiments), we use the Argoverse 2 Sensor train split and con-
catenate a roughly twice as large set of unannotated frame pairs from the Argoverse 2
LiDAR dataset, uniformly sampled from its 20,000 sequences to maximize data di-
versity. For our scaled up student architecture (denoted XL in all experiments), we
use the XL backbone described in Section 3.7.3.

Table 3.6: Quantitative results on the Argoverse 2 Sensor validation split using the
evaluation protocol from [119]. The methods used in this paper, shown in the first
two blocks of the table, are trained and evaluated on point clouds within a 102.4m
× 102.4m area centered around the ego vehicle (the settings for the Argoverse 2
Self-Supervised Scene Flow Challenge) . However, following the protocol of [119],
all methods report error on points in the 70m × 70m area centered around the ego
vehicle. Runtimes are collected on an NVIDIA V100 with a batch size of 1 [135].
FastFlow3D, ZeroFlow 1X, and ZeroFlow 3X have identical feedforward architec-
tures and thus share the same real-time runtime; FastFlow3D XL, ZeroFlow XL 1X,
and ZeroFlow XL 3X have identical feedforward architectures and thus share the
same runtime. Methods with an * have performance averaged over 3 training runs.
Underlined methods require human supervision.

Runtime (ms) Point Cloud Threeway Dynamic Static Static
Subsampled Size EPE FG EPE FG EPE BG EPE

FastFlow3D* [122]
29.33± 2.38

Full Point Cloud 0.071 0.186 0.021 0.006
ZeroFlow 1X* (Ours) Full Point Cloud 0.088 0.231 0.022 0.011
ZeroFlow 3X (Ours) Full Point Cloud 0.064 0.164 0.017 0.011
ZeroFlow 5X (Ours) Full Point Cloud 0.056 0.140 0.017 0.011

FastFlow3D XL
260.61± 1.21

Full Point Cloud 0.055 0.139 0.018 0.007
ZeroFlow XL 1X (Ours) Full Point Cloud 0.070 0.178 0.019 0.013
ZeroFlow XL 3X (Ours) Full Point Cloud 0.054 0.131 0.018 0.012
NSFP w/ Motion Comp [127] 26, 285.0± 18, 139.3 Full Point Cloud 0.067 0.131 0.036 0.034
Chodosh et al. [119] 35, 281.4± 20, 247.7 Full Point Cloud 0.055 0.129 0.028 0.008

Odometry — Full Point Cloud 0.198 0.583 0.010 0.000
ICP [61] 523.11± 169.34 Full Point Cloud 0.204 0.557 0.025 0.028
Gojcic [70] 6, 087.87± 1, 690.56 20000 0.083 0.155 0.064 0.032
Sim2Real [79] 99.35± 13.88 8192 0.157 0.229 0.106 0.137
EgoFlow [106] 2, 116.34± 292.32 8192 0.205 0.447 0.079 0.090
PPWC [113] 79.43± 2.20 8192 0.130 0.168 0.092 0.129
FlowStep3D [83] 687.54± 3.13 8192 0.161 0.173 0.132 0.176

As shown in Table 3.6, ZeroFlow is able to leverage scale to deliver superior
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performance. While ZeroFlow 1X loses a head-to-head competition against the
human-supervised FastFlow3D on both Argoverse 2 (Table 3.6) and Waymo Open
(Table 3.7), scaling the distillation process to additional unlabeled data provided by
Argoverse 2 enables ZeroFlow 3X to significantly surpass the performance of both
methods just by training on more pseudo-labled data. ZeroFlow 3X even surpasses
the performance of its own teacher, NSFP, while running in real-time!

ZeroFlow’s pipeline also benefits from scaling up the student architecture. We
modify ZeroFlow’s architecture with the much larger XL backbone, and show that
our ZeroFlow XL 3X is able to combine the power of dataset and model scale to
outperform all other methods, including significantly outperform its own teacher.
Our simple approach achieves state-of-the-art on both the Argoverse 2 validation
split and Argoverse 2 Self-Supervised Scene Flow Challenge.

Table 3.7: Quantitative results on Waymo Open using the evaluation protocol from
[119]. Runtimes are scaled to approximate the performance on a V100 [125]. Both
FastFlow3D and ZeroFlow 1X have identical feedforward architectures and thus
share the same runtime. Underlined methods require human supervision.

Runtime (ms) Point Cloud Threeway Dynamic Static Static
Subsampled Size EPE FG EPE FG EPE BG EPE

ZeroFlow 1X (Ours) 21.66± 0.48 Full Point Cloud 0.092 0.216 0.015 0.045
FastFlow3D [122] Full Point Cloud 0.078 0.195 0.015 0.024

Chodosh [119] 93, 752.3± 76, 786.1 Full Point Cloud 0.041 0.073 0.013 0.039
NSFP [127] 90, 999.1± 74, 034.9 Full Point Cloud 0.100 0.171 0.022 0.108
ICP [61] 302.70± 157.61 Full Point Cloud 0.192 0.498 0.022 0.055
Gojcic [70] 501.69± 54.63 20000 0.059 0.107 0.045 0.025
EgoFlow [106] 893.68± 86.55 8192 0.183 0.390 0.069 0.089
Sim2Real [79] 72.84± 14.79 8192 0.166 0.198 0.099 0.201
PPWC [113] 101.43± 5.48 8192 0.132 0.180 0.075 0.142
FlowStep3D [83] 872.02± 6.24 8192 0.169 0.152 0.123 0.232

3.8.2 How does ZeroFlow scale?

Section 3.8.1 demonstrates that ZeroFlow can leverage scale to capture state-of-the-
art performance. However, it’s difficult to perform extensive model tuning for large
training runs, so predictable estimates of performance as a function of dataset size
are critical [134]. Does ZeroFlow’s performance follow predictable scaling laws?

We train ZeroFlow and FastFlow3D on sequence subsets / supersets of the Argo-
verse 2 Sensor train split. Figure 3.12 shows ZeroFlow and FastFlow3D’s validation
Threeway EPE both decrease roughly logarithmically, and this trend appears to
hold for XL backbone models as well.

Empirically, ZeroFlow adheres to predictable scaling laws that demonstrate more
data (and more parameters) are all you need to get better performance. This makes
ZeroFlow a practical pipeline for building scene flow foundation models [117] using
the raw point cloud data that exists today in the deployment logs of Autonomous
Vehicles and other deployed systems.
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Figure 3.12: Empirical scaling laws for ZeroFlow. We report Argoverse 2 validation
split Threeway EPE as a percentage of the Argoverse 2 train split used, on a log10-
log10 scale, trained to convergence. Threeway EPE performance of ZeroFlow scales
logarithmically with the amount of training data.

3.8.3 How does dataset diversity influence ZeroFlow’s performance?

In typical human annotation setups, a point cloud sequence is given to the human
annotator. The human generates box annotations in the first frame, and then up-
dates the pose of those boxes as the objects move through the sequence, introducing
and removing annotations as needed. This process is much more efficient than anno-
tating disjoint frame pairs, as it amortizes the time spent annotating most objects in
the sequence. This is why most human annotated training datasets (e.g. Argoverse 2
Sensor, Waymo Open) are composed of contiguous sequences. However, contiguous
frames have significant structural similarity; in the 150 frames (15 seconds) of an Ar-
goverse 2 Sensor sequence, the vehicle typically observes no more than a city block’s
worth of unique structure. ZeroFlow, which requires zero human labels, does not
have this constraint on its pseudo-labels; NSFP run on non-sequential frames is
no more expensive than NSFP run on non-sequential frames, enabling ZeroFlow to
train on a more diverse dataset. How does dataset diversity impact performance?

To understand the impact of data diversity, we train a version of ZeroFlow 1X
and ZeroFlow 2X only on the diverse subset of our Argoverse 2 LiDAR data selected
by uniformly sampling 12 frame pairs from each of the 20,000 unique sequences
(Table 3.8).

Dataset diversity has a non-trivial impact on performance; ZeroFlow, by virtue
of being able to learn across non-contiguous frame pairs, is able to see more unique
scene structure and thus learn to better to extract motion in the presence of the
unique geometries of the real world.
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Table 3.8: Comparison between ZeroFlow trained on Argoverse 2 Sensor dataset ver-
sus the more diverse, unlabeled Argoverse 2 LiDAR subset described in Section 3.8.1.
Diverse training datasets result in non-trivial performance improvements.

Threeway Dynamic Static Static
EPE FG EPE FG EPE BG EPE

FastFlow3D* [122] 0.071 0.186 0.021 0.006
ZeroFlow 1X (AV2 Sensor Data)* 0.088 0.231 0.022 0.011
ZeroFlow 1X (AV2 LiDAR Subset Data) 0.082 0.218 0.018 0.009
ZeroFlow 2X (AV2 LiDAR Subset Data) 0.072 0.184 0.022 0.011

3.8.4 How do the noise characteristics of ZeroFlow compare to other meth-
ods?

ZeroFlow distills NSFP into a feedforward model from the FastFlow3D family. Sec-
tion 3.8.1 highlights the average performance of ZeroFlow across Threeway EPE
catagories, but what does the error distribution look like?

Figure 3.13: Normalized frame birds-eye-view heatmaps of endpoint residuals for
Chamfer Distance, as well as the outputs for NSFP and Chodosh on moving points
(points with ground truth speed above 0.5m/s). Perfect predictions would produce
a single central dot. Top row shows the frequency on a log10 color scale, bottom row
shows the frequency on an absolute color scale. Qualitatively, methods with better
quantitative results have tighter residual distributions.

To answer this question, we plot birds-eye-view flow vector residuals of NSFP,
Chodosh, FastFlow3D, and several members of the ZeroFlow family on moving ob-
jects from the Argoverse 2 validation dataset, where the ground truth is rotated
vertically and centered at the origin to present all vectors in the same frame. Qual-
itatively, these plots show that error is mostly distributed along the camera ray and
distributional tightness (log10 plots) roughly corresponds to overall method perfor-
mance.

Overall, these plots provide useful insights to practitioners and researchers, par-
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ticularly for consumption in downstream tasks; as an example, open world object
extraction [133] requires the ability to threshold for motion and cluster motion vec-
tors together to extract the entire object. Decreased average EPE is useful for this
task, but understanding the magnitude and distribution of flow vectors is needed to
craft good extraction heuristics.

3.8.5 How does teacher quality impact ZeroFlow’s performance?

As shown in Section 3.8.1 [119] has superior Threeway EPE over NSFP on both
Argoverse 2 and Waymo Open. Can a better performing teacher lead a better
version of ZeroFlow?

To understand the impact of a better teacher, we train ZeroFlow on Argoverse 2
using superior quality flow vectors from [119], which proposes a refinement step to
NSFP lablels to provide improvements to flow vector quality (Table 3.9). ZeroFlow
trained on Chodosh refined pseudo-labels provides no meaningful quality improve-
ment over NSFP pseudo-labels. These results also hold for our ablated speed scaled
version of ZeroFlow as well.

Since increasing the quality of the teacher over NSFP provides no noticeable
benefit, can we get away with using a significantly faster but lower quality teacher to
replace NSFP, e.g. the commonly used self-supervised proxy of TruncatedChamfer?

To understand if NSFP is necessary, we train ZeroFlow on Argoverse 2 using
pseudo-labels from the nearest neighbor, truncated to 2 meters as with Truncated-
Chamfer. ZeroFlow trained on TruncatedChamfer pseudo-labels performs signifi-
cantly worse than NSFP, motivating the use of NSFP as a teacher.

Table 3.9: Comparison between ZeroFlow trained on Argoverse 2 using NSFP
pseudo-labels, ZeroFlow using [119] pseudo-labels, and ZeroFlow using Truncated-
Chamfer. Methods with an * have performance averaged over 3 training runs. The
minor quality improvement of Chodosh pseudo-labels does not lead to a meaningful
difference in performance, while the significant degradation of TruncatedChamfer
leads to significantly worse performance.

Threeway Dynamic Static Static
EPE FG EPE FG EPE BG EPE

ZeroFlow 1X (NSFP pseudo-labels)* 0.088 0.231 0.022 0.011
ZeroFlow 1X ([119] pseudo-labels) 0.085 0.234 0.018 0.004
ZeroFlow 1X (TruncatedChamfer pseudo-labels) 0.105 0.226 0.049 0.040
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Chapter 4

Towards Multi-Signal Recovery

4.1 Introduction

Dynamic scene understanding aims to produce a model of the world that explains
all measurements over time. In the context of depth sensors, this problem is posed
as dynamic surface reconstruction, where the goal is to produce a time-varying
surface that matches a sequence of depth measurements. This problem has been
widely studied in the context of handheld RGB-D sensors capturing human-scale
scenes[161, 165, 179, 175]. However, investment in autonomous driving has created
a new mode of depth capture — spinning LiDAR sensors atop moving vehicles
— which is largely unaddressed by the existing research. Existing methods focus
on reconstructing a few densely-scanned non-rigid objects, but autonomous driving
scenes are typically composed of many sparsely-scanned rigid objects [70, 149]. In
this work, we propose the first dynamic surface reconstruction system aimed at
operating in this setting. In addition to producing compelling visual results, our
system is able to substantially improve the quality of ground truth annotations of
ego-vehicle pose and object tracks provided in flagship datasets such as NuScenes [60]
and Argoverse[174].

Approach: We address the dynamic scene reconstruction problem from a classic
“analysis by synthesis” perspective; we synthesize a dense spacetime reconstruction
via a compositional model of geometry and motion. We then measure the 3D error
of the reconstruction with respect to the observed LiDAR scans. Finally, we opti-
mize the geometry and motion to minimize this 3D error. We take care to formulate
the optimization so that it can be efficiently decomposed into alternating steps of 1)
estimating 6-DOF motion parameters of rigidly-moving components (including the
moving ego-vehicle) and 2) estimating the geometry of each rigid component (includ-
ing the static background). Such a decomposition allows us to leverage off-the-shelf
solutions to the point registration and point-to-mesh surface reconstruction prob-
lems, respectively. Interestingly, by modeling 6-DOF pose trajectories continuously,
our reconstructions can easily account for the “rolling shutter” effects of rotating
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Figure 4.1: Surface reconstruction of a dynamic sequence from NuScenes. Given ego-
pose and bounding box annotations, a naive approach would aggregate background
and object points into common reference frames and then run a point-to-surface
reconstruction algorithm. Even human annotations are not accurate enough for
this simple approach (top left). Instead, we design an optimization that refines
both the ego and object poses, yielding high-quality reconstructions (top right).
The input LiDAR sweep is plotted with red and blue spheres, red for background
points and blue for dynamic. The naive approach also fails due to rolling shutter
effects on fast-moving vehicles (bottom left) which we correct for (bottom right)

.

LiDAR scanners. This allows our reconstructions to properly motion-compensate
LiDAR scans for moving objects (for the first time, to our knowledge), complement-
ing widely-used techniques for motion-compensation of static scenes.

Applications: Our goal is to generate dynamic scene reconstructions that pro-
vide high-quality annotations for downstream autonomous driving tasks. Labeling
in-the-wild data is extremely costly, and as a result, many autonomous driving tasks
rely on re-processing existing data of varying quality. For example, depth comple-
tion benchmarks use aggregated LiDAR sweeps to generate ground truth “dense”
depth reconstructions [169]. This results in annotated data with well-documented
occlusion errors and motion artifacts that are nonetheless still used for training and
evaluation [173, 180]. An example of the depth maps produced by our method is
shown in Fig. 4.3. Scene flow is another autonomous driving task that re-processes
existing AV datasets, using annotated bounding box motion between frames as a
proxy for the underlying ground-truth motion field [57, 87], which also has well-
documented issues in evaluation [149]. Accurate time-space reconstructions of the
rigidly moving objects in the scene are critical to both of these tasks. We demon-
strate that the ground-truth motion annotations are insufficient for producing these
reconstructions and that our system significantly improves upon them. We provide
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Figure 4.2: LiDAR returns are often grouped and processed in 360-degree sweeps,
but most sensors have a continuous “shutter” as they rotate. Our framework can
model this continuous shutter for any combination of LiDAR sensors or scanning
patterns. We find that this modeling has a large impact on the quality of recon-
structed objects. Here, we visualize the set of points within a sweep, which are
captured simultaneously (green lines) for NuScenes (top) and Argoverse (bottom).
Argoverse has two LiDAR sensors spinning 180 degrees out of phase, leading to two
sets of points being captured at each instant.

numerous qualitative visuals that speak to our accuracy (including those in the sup-
plement), but providing quantitative results is challenging since we often outperform
the ground truth to which one normally compares! That said, we do provide quan-
titative metrics such as point-to-surface error metrics. Moreover, we show that our
dynamic reconstruction engine can already be used as a practical system for fully
or semi-automatic annotation by converting the output of off-the-shelf object track-
ers or low-frame rate human annotations into high-frame rate reconstructions. In
particular, we outperform the baseline approach of linear-interpolated annotations,
which is widely-used despite its simplicity [57, 87, 149].

In short, our main contributions are posing the classic dynamic surface recon-
struction problem in a new setting, proposing new downstream applications of this
problem, and demonstrating a simple yet effective optimization-based solution.
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4.2 Related Work

Dynamic Surface Reconstruction: Reconstruction of non-rigid surfaces from depth
scanners has been studied for over two decades[160]. Early work overcame the
inherent ill-posedness of the problem by relying on object-specific shape models for
humans[166], faces[157] and hands[164]. Since then, many works have demonstrated
template-free reconstruction in both the online[161] and offline settings[162]. This
line of work is focused on highly deformable objects such as people and animals,
which are very close to the depth sensor. As a result, they do not apply to the
long-range, generally rigid world of autonomous driving scenes.

Dynamic SLAM: Since we are solving for the global map of the world as well as
the sensor’s location within it, our work is closely related to SLAM in general and
specifically to Dynamic SLAM, sometimes called SLOT (Simultaneous Localization
and Object Tracking). Many works identify dynamic objects to remove them from
the global map[152], but some track dynamic objects and register new observations
to an object template. Similar to our work, these approaches typically represent
the world as a composition of rigid bodies[148, 171, 151, 176, 153, 167]. These
methods are focused on real-time operation from RGB inputs rather than offline
LiDAR processing. As a result, they generally do not reconstruct detailed surface
representations of the tracked objects, although that has been proposed as a post-
processing step to the tracked objects[155]. Also similar to our work are SLAM
methods, which create a dense surface reconstruction of the global map[170, 157].
However, to our knowledge, none of these approaches reconstruct dynamic objects.

Asset Generation for Autonomous Driving: Related to the object reconstruction
component of our system is the line of work focused on creating high-quality mesh
reconstructions of vehicles for simulation purposes[177, 158, 172]. These methods
are similar to ours in that they reconstruct dense meshes of in-the-wild vehicles but
have several key differences. First, since these systems aim to extract assets, not
reconstruct complete sequences, they focus on objects that are close to the sensor and
have accurate poses from object detection. Although this is not made explicit, the
result is that these systems are made to operate on stationary objects, not dynamic
ones. Second, they rely heavily on RGB information as well as depth sensors. As we
show, reconstructing moving objects from spinning LiDARs requires careful handling
of the rolling-shutter effect. This makes it challenging to incorporate global-shutter
RGB cameras. The fact that these works make no mention of this further indicates
that they do not handle dynamic objects.

4.3 Problem Statement

We assume as input a sequence of LiDAR sweeps measured at timestamps t ∈ T ,
and coarse tracks of K objects. Since we are using a compositional model of the
scene, we will need a coordinate frame for each component.
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Figure 4.3: An example dense depth map produced by our method
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Figure 4.4: A high-level overview of our method when used with sparse ground truth
annotations. We take the annotated LiDAR frames that make use of interpolation
and off-the-shelf LiDAR odometry to initialize object and ego poses for all frames.
Our global optimization makes use of coordinate descent to update the geometry
and motion alternatingly. When using the output of an object tracker as input, we
omit the interpolation step, as the tracks cover all the input frames.

• Ego coordinates: This is the coordinate frame that the input points are mea-
sured in. That is, the coordinate frame where the LiDAR sensor is at the
origin and the z-direction points along the rotation axis. Since the ego-vehicle
is moving, this coordinate frame changes over time. We will denote the sensor
coordinate frame at time t as et.

• Object coordinates: To each of the K objects in the sequence, we will assign a
coordinate system where the object is at the origin, the z-direction is up and
the x-direction is “forward”. Each of these coordinate systems also varies with
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time to express the dynamic object motion. We will denote the ith object’s
coordinate frame at time t as oi

t.

• World coordinates: This is the fixed global coordinate frame of the scene,
which we denote as w. Importantly, we represent the static background in this
fixed world coordinate frame. Due to the global coordinate frame ambiguity,
we will choose this frame to be equal to e1.

To indicate the coordinate frame of given point x, or set of points X we will
use subscripts: for example, we write input points as xet , Xet . We will express
the relationships between these coordinate frames using 4 × 4 rigid transformation
matrices T. We write the transformation from world coordinates at time t to sensor
coordinates et as Tet

w . Similarly, the transformation from object i at time t to world
coordinates is written as Tw

oi
t
. Then, transformation from the ith object’s coordinate

system at time t to the sensor coordinates at time t can be written as Tet

oi
t

= Tet
w Tw

oi
t
.

We aim to decompose the scene into a set of surfaces that transform rigidly over
time. Our approach is agnostic to the particular choice of surface representation, but
we use triangular meshes since they are lightweight and widely used. We will have a
mesh for each of the K objects in the scene {Mi}Ki=1 as well as the backgroundM0.
In a slight abuse of notation, we will write TM to denote transforming the vertices
ofM by the transformation T. Similarly, we will write TX to express transforming
the points X. The union of two meshes will be written as [M1,M2]. Finally, we
will measure the 3D distance between a mesh and a point cloud using the nearest
neighbor loss

D(M, X) =
∑
x∈X

min
m∈M

∥m− x∥. (4.1)

4.4 Objective

We aim to find surfaces and their 6-DOF motion parameters such that their com-
position matches the measured pointcloud at each timestep. Since our pointclouds
are measured in the ego coordinates et, we must transform our meshes into that
frame. Consider a scene composed of a background mesh (M0) and a single object
(M1). To transform object M1 into et, we first place it in the world via Tw

o1
t

and
then view the world from the sensor frame via Tet

w . We can use the transforma-
tion Tet

o1
1

= Tet
w Tw

o1
t

to accomplish both. To transform the static background mesh
(which is already represented in world coordinates), we need only transform it by
Tet

w . Once all surfaces have been transformed into frame et, the composite recon-
struction

[
Tet

wM0, Tet

ot
1
M1

]
is compared to the measured LiDAR points Xe1 using

the nearest-neighbor distance from eq. (4.1). Summing this over all time produces
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our final reconstruction error:

min
{Mi,T

et

oi
t

,Tet
w }

∑
t∈T
D(
[
Tet

wM0, Tet

o1
t
M1, . . . , Tet

oK
t
MK

]
, Xet). (4.2)

4.4.1 Decomposition

We could use a differentiable renderer and optimize eq. (4.2) with gradient de-
scent. But, we will demonstrate that decomposing the optimization into discrete
sub-components allows us to leverage off-the-shelf tools and yields good reconstruc-
tions. To aid in this decomposition, let Xi

et
denote the subset of points from Xet

which fall on object i. This assignment can be coarse, and in practice, we assign
points to the bounding box they fall into and to the background if they are not
contained in any bounding box. Once we have refined the poses of the bounding
boxes, we can recompute this step to get new assignments. Using this notation, we
can further break down eq. (4.2) into:

min
{Mi,T

et

oi
t

,Tet
w }

∑
t∈T

K∑
i=0
D(Tet

oi
t
Mi, Xi

et
), (4.3)

where we let o0
t = w for notional simplicity.

Our approach consists of applying coordinate descent: alternating between fixing
the poses to optimize the meshes and then fixing the meshes to update the poses.
These stages are the pose step and mesh step, respectively. The coarse bounding
boxes are used to initialize Tet

oi
t

and an off-the-shelf LiDAR odometry method is used
to initialize Tet

w . We do not require any initialization of the meshes. A schematic of
the pipeline is shown in Fig. 4.4.

4.4.2 Mesh Step

Assuming fixed poses, we can estimate new meshes by solving

Mi ←[ arg min
Mi

∑
t∈T
D(Tet

oi
t
Mi, Xi

et
). (4.4)

We can make use of two identities related to the nearest neighbor distance to
transform this optimization into a well-known problem. First, we can use the fact
the distance is unaffected by a global rigid transformation to see that D(TM, X) =
D(M, T−1X). Second, if we write a set of points X = [X1, X2] as a union of two
disjoint sets X1 and X2, we can see that D(M, [X1, X2]) = D(M, X1) +D(M, X2).
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Now we combine them to get:

Mi ←[ arg min
Mi

∑
t∈T
D(Tet

oi
t
Mi, Xi

et
)

= arg min
Mi

∑
t∈T
D(Mi, (Tet

oi
t
)−1Xi

et
)

= arg min
Mi

D
(
Mi,

[
(Tet

oi
t
)−1Xi

et
, . . .

])
.

(4.5)

The final form of this equation can be interpreted as a standard static point-
to-surface reconstruction problem. We use the recent Neural Kernel Surface Re-
construction [154], but any technique, such as Poisson surface reconstruction [156],
could be used.

4.4.3 Pose Step

Assuming fixed meshes, we can estimate new poses by solving

Tet

oi
t
←[ arg min

Tet

oi
t

D
(
Tet

oi
t
Mi, Xi

et

)
= arg min

Tet

oi
t

D
(
Mi, (Tet

oi
t
)−1Xi

et

)
.

(4.6)

This is a point-to-mesh registration problem that is well-studied under the family
of Iterative Closest Point (ICP) methods. However, there is a complication that we
thus far have avoided by being vague about the definition of a LiDAR sweep.

4.4.4 What is a LiDAR sweep?

Revolving LiDAR sensors do not have a global shutter. Instead, they rotate contin-
uously and measure depth across 16-128 vertically arranged lasers, typically taking
100ms to complete a 360-degree rotation. Depth along each laser ray is measured
with respect to the (potentially moving) ego sensor frame. Most software packages
abstract away this continuous capture and instead generate a virtual sweep of point
measurements that would have been obtained if the sensor captured the world a
single time instant with a global 360-degree shutter. To do so, robotic platforms
typically transform all points to a chosen reference frame (by exploiting knowledge
of continuous ego pose during the 100ms capture window, often obtained with a
constant velocity assumption).

Such motion compensation will generate the correct virtual point cloud for a
static world but will not correctly compensate for moving objects in a dynamic
world. This well-known phenomenon is often manifested as vertical “seams” that
appear in a sweep since points on either side of the seam are collected 100ms apart
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Figure 4.5: (Left) A LiDAR sweep where each point has been colored according to
which laser it belongs to (hue) and the time within the sweep it was acquired (lighter
is earlier, darker is later). A moving car is passing the ego-vehicle on the left and
is captured at both the start and end of the sweep (top right), leading to distortion
(the driver-side window is captured twice in different locations). Accounting for this
distortion by modeling the object motion is key to the quality of our reconstructions
(bottom right).

Figure 4.6: Accurate object poses and accounting for intra-sweep motion are crit-
ical for high-quality reconstructions. (Left) shows the reconstruction with neither
refined poses nor object-motion compensation, (middle) shows the reconstruction
with refined poses but without object-motion compensation, and (right) shows the
result of combining both.
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(Fig. 4.5). However, our spacetime optimization can correctly model moving ob-
jects by letting our time index t be a continuous variable rather than an integer
frame index. For example, if we have a 16-beam LiDAR sensor that takes 1080
measurements in a single rotation, the first 16 points of our sequence are written
as Xe1/1080 . Importantly, our global optimization eq. (4.2), mesh step eq. (4.4), and
pose step eq. (4.6) are just as valid under this interpretation of a sweep “slice”,
but with 1080 times as many poses. This is computationally expensive and may
underconstrain the optimization. To avoid this, we adopt a constant velocity model
for poses between “keyframes” placed at the end of every complete sensor rotation.
For example, we can express the continuous pose of the sensor for 0 < t < 1 using
the keyframe poses Tw

e0 , Tw
e1 like so:

Te1
w (Te0

w )−1 =
[
R3×3 v3×1
01×3 1

]
, w = log (R)

Tw
et

= Tw
e1

[
ew(1−t) v(1− t)
01×3 1

]
= Tw

e1Te1
et

.

(4.7)

Just as we assumed that the ego-vehicle obeys a constant velocity model between
keyframes, we can make the same assumption about the motion of other objects in
the scene. However, care needs to be taken to ensure that the constant velocity
assumption is applied to the object’s motion with respect to the world as opposed
to with respect to the ego-vehicle. Constant velocity in the world frame is not
equivalent to constant velocity in the moving sensor frame due to the presence of
rotations. With this in mind, we represent the object poses like so:

(
To1

e1Te1
w

) (
To0

e0Te0
w

)−1 =
[
R3×3 v3×1
01×3 1

]
, w = log (R)

Toi
t

et =
[
ew(1−t) v(1− t)
01×3 1

]
Toi

1
e1Te1

et
= Toi

t

oi
1
Toi

1
e1Te1

et
.

(4.8)

This factorization is not only the correct way of applying the constant velocity
assumption but also makes it easy to deal with the fact that, in many cases, pub-
lic datasets do not release the raw Xet points but instead release the ego-motion
compensated points Te1

et
Xet . With the above factorization, we can omit the first

Te1
et

transformation as it has already been applied. This is one of those fortunate
situations where the easy and correct approaches are the same!

We can directly plug eq. (4.7) and eq. (4.8) into our mesh and pose steps. This
is precisely what we do for the mesh step in eq. (4.4), but there is one detail to
account for. Point-to-surface reconstruction methods need to disambiguate between
the inside and outside of the reconstructed objects. This is often done using the
empty-space constraint provided by the rays connecting the sensor to each measured
point. Care needs to be taken to use the continuous sensor position defined by the
continuous pose, or else the reconstruction can fail.
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Figure 4.7: (Left) Each column shows NuScenes object reconstructions using ground
truth poses compared to (right) ours.

For the pose step in eq. (4.6), naively plugging it in complicates the use of
off-the-shelf ICP methods. Instead, we make an approximation where we consider
the intra-sweep transformations Te1

et
and Toi

t

oi
1

to be fixed corrections applied be-
fore estimating new keyframe poses. This corresponds to the common practice of
motion-compensating a sweep, but our approach produces a 360-degree sweep that
is correctly compensated for object motion (for the first time, to our knowledge).

4.5 Experimental Setup

We test our method on sparse LiDAR sequences from NuScenes[60] and the Ar-
goverse 2.0[174]. NuScenes also has sparse annotations, providing them at 2Hz
compared to measuring LiDAR sweeps at 20Hz. This sparsity allows us to show-
case our method’s ability to densify in space and time. As a result, we focus our
quantitative analysis on NuScenes, but similar results for Argoverse can be found
in the supplemental material. NuScenes breaks the data into 20-second sequences,
each containing around 400 LiDAR sweeps. Since our method does not require any
training data, we focus on qualitative and quantitative evaluation of the ten valida-
tion sequences the dataset authors chose to serve as a representative sample of the
data. We omit one sequence (scene-0553) since it does not contain any motion of
the vehicle. For each sequence, we initialize the ego-poses using a recent LiDAR-
only odometry method[109]. We initialize the object tracks and bounding boxes
either by using linear interpolation on the provided object annotations or with the
output of an off-the-shelf LiDAR object tracker[163]. We then run 100 iterations of
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refinement on all of the objects and background maps, with early stopping criteria
to avoid wasted computation. Iterations are stopped if the mean registration error
for an object falls below 1 centimeter for three consecutive iterations. For the mesh
step, we use the default parameters of the publicly released Neural Kernel Surface
Reconstruction model[154]. For the pose update, once we have deskewed the dy-
namic objects, we use a standard ICP implementation[181] with a point-to-plane
loss, a robust Huber kernel with k = 0.2 and a matching threshold of 1.5 meters.

For the tracking results, we use the Centerpoint-based[178] object detector
LT3D[163] to extract bounding boxes in all frames. We then use greedy association
to turn the detections into object tracks.

4.6 Qualitative Results

Figure 4.8: (Left) Argoverse object recon-
structions using ground truth poses com-
pared to (right) ours.

Visualizations of our foreground recon-
structions on NuScenes are shown in
Fig. 4.7. An example reconstruction
from Argoverse is shown in Fig. 4.8.
In the visualizations, we show that the
ground-truth object annotations are not
accurate enough to yield good recon-
struction. Errors in bounding box align-
ment and orientation lead to point ag-
gregation errors, leading to poor surface
reconstructions. The fact that our re-
fined object poses lead to better recon-

structions is evidence that we produce better annotations than the ground truth.
Motion distortion from dynamic objects also contributes to the poor quality of the
ground truth reconstructions. In figure 4.6, we show how accounting for this distor-
tion can significantly improve the reconstructions.

Background reconstructions from NuScenes are shown in Fig. 4.10 and Argoverse
in Fig. 4.9. For these “objects” the quality improvement comes from refining the ego-
pose of the vehicle. As with foreground objects, ego-pose errors cause misalignment
of the LiDAR sweeps, which become surface artifacts. However, the comparison is
with a state-of-the-art LiDAR odometry method instead of the ground truth. We
use odometry because it performs better than the ground-truth ego-poses.

4.7 Quantitative Results
We analyze how well our piecewise rigid model can represent the dynamic scenes.
Recent works that use volumetric scene representations[150, 168] typically use ray-
casting along the ground-truth ray directions to measure this property. However,
we find that this metric is dominated by large outlier errors caused by rays missing
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NN Dist (m) ↓ Acc Relax ↑ Acc Strict ↑
DSNerf[150] 0.537 0.81 0.70
SUDS[168] 0.18 0.94 0.88
NKSR[154] + GT tracks (2Hz) 0.071 0.9 0.76
NKSR[154] + LT3D[163] tracks (2Hz) 0.071 0.9 0.76
Ours + GT tracks (2 Hz) 0.048 0.96 0.91
Ours + GT tracks (1 Hz) 0.050 0.96 0.90
Ours + GT tracks (0.5 Hz) 0.048 0.96 0.91
Ours + GT tracks (0.25 Hz) 0.048 0.96 0.91
Ours + LT3D[163] tracks 0.048 0.96 0.90

Table 4.1: Surface quality evaluation on NuScenes, measured by comparing the
LiDAR points to their closest points on the reconstructed surfaces.

an object boundary. This makes the metric hard to interpret since it is a mixture
of two different error distributions. Instead, we propose to measure reconstruction
accuracy using the nearest-neighbor distance between the input point clouds and
the reconstructed scene at each timestamp. We report the average distance and two
accuracy metrics to characterize the distribution of errors. Specifically, we compute
the percent of points less than 10cm and 5cm for the relaxed and strict metrics,
respectively.

We compare our method using different inputs (ground truth annotations with
varying rates of subsampling and the output of an object tracker) to several strong
baselines. First, we compare with DS-Nerf[150] and SUDS[168], two NeRF-style[159]
models which have been adapted to urban scenes with LiDAR inputs. Second, we
compare with the surface reconstruction method NKSR[154] combined with either
ground truth object tracking or the results of the off-the-shelf tracker we use.

As seen in Tab. 4.1, our method outperforms all baselines. We find that the NeRF
style methods are good at reconstructing most points, leading to high accuracy
metrics, but are prone to significant outlier errors, leading to poor average error.
On the other hand, the surface-based method achieves better average error but fails
at reconstructing fine detail, leading to low strict accuracy. In contrast, our method
produces suitable high-level geometry, leading to low average error, and faithfully
reconstructs fine details, leading to high accuracy.

We use the same annotation subsampling technique to evaluate the improvement
of our estimates of the locations of the dynamic objects in the scenes. By omitting
input annotations, we can compare our method’s predicted object locations to the
ground truth using the NuScenes’ Average Translation Error metric[60]. We com-
pute this metric over the nine test sequences and filter out objects that follow linear
trajectories. As shown in Tab. 4.2, our method improves the estimates of complex
object motions.
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ATE (m) ↓
1Hz 0.5Hz 0.25Hz

Interpolation 0.29 0.40 0.74
Ours 0.20 0.22 0.52

Table 4.2: Pose accuracy evaluation on NuScenes (using NuScene’s default ATE met-
ric), measured by comparing the bounding box locations predicted by our method to
held-out ground truth labels provided at 2Hz. We compare our method to linearly
interpolating the poses as is commonly done to create scene-flow labels [57].

Figure 4.9: (Left) Map reconstruction on Argoverse 2.0 using ground truth poses
compared to (right) ours.

4.8 Conclusion
In this work, we brought dense, dynamic reconstruction to the large-scale in-the-
wild autonomous vehicle setting. We developed an optimization framework for
understanding this problem and provided a simple yet effective solution based on
decomposing the problem into well-studied sub-components. This solution yields
high-quality reconstructions of both the foreground and background and can even
account for subtle distortions in the input point clouds. We hope that this method
will not only be useful for creating training and evaluation data for other perception
tasks but will also promote active research in this challenging setting.
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Figure 4.10: (Left) Map reconstructions using odometry poses compared to (right)
ours. Ground-truth ego poses produce even worse results since NuScenes does not
align poses in the z (height) dimension.
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Chapter 5

Conclusions

In this thesis, we revisited the classic analysis-by-synthesis perspective on recovery
problems. We aimed to bring this perspective up to date by combining test time
optimizations with large-scale machine learning. In doing so, we identified several
benefits of analysis-by-synthesis, the greatest of which was the ability to incorporate
knowledge of the measurement process into the inference step. These ideas were
explored across several tasks and settings.

The first set of tasks we considered—compression artifact removal, depth com-
pletion, and trajectory reconstruction—–were all supervised by large datasets of
pairs of measurements and clean signals. In this supervised setting, we designed a
bi-level optimization that allowed us to learn signal models that lead to good recon-
structions. We used this framework to show that more complicated forward models
yield more significant gains from the test-time optimization approach.

We then examined the unsupervised recovery problem of scene flow estimation
from LiDAR point clouds. We found that, without supervision, feedforward models
were generally less effective than carefully designed test time optimizations. We used
this insight to create a student/teacher method that distilled the information from a
test time optimization into a fast feedforward network that could be scaled to huge
unlabeled datasets. This distillation ultimately led to the student outperforming
the teacher and achieving state-of-the-art results.

Finally, we leaned further into modeling the measurement process to estimate
motion and geometry simultaneously from point clouds. In this challenging problem,
we designed an analysis by synthesis optimization, which combined both signals and
explored a different method for incorporating learning. Specifically, we decomposed
the objective into discrete steps which could be handled by off-the-shelf networks.
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